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Electron clouds

e is emitted Secondary Electron Emission can drive an avalanche multiplication
(photoelectric effect) effect filling the beam chamber with an electron cloud

\ Beam chamber

Proton bunch Secondary Electron Emission "(G. ladarola et al, 2018, ‘Electron Cloud Effects’)

1 Bunch spacing (e.g. 25 ns) l | ' Tim:
1. Electrons are introduced into the beam chamber
(residual gas ionization / synchr. rad. + photoelectric effect)
2. Electrons are accelerated by passing bunches " emestordierentsuies
and impact on beam chamber.
« Depending on energy of electron
and Secondary Emission Yield of
surface, electrons can be emitted.

If conditions allow, electrons multiply
exponentially!

Secondary Electron Yield &(E)
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Electron clouds

Dipole: passage = 0 1.0 Quadrupole: passage = 0 50
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Electrons multiply until a saturation is reached.
Number of electrons quickly decays when bunches are not passing.
Magnetic fields strongly affect the e-cloud.
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Electron cloud effects

The electron flux to the wall is responsible for

» Spurious signal for beam instrumentation

« Dynamic pressure rise

» Heat deposition (One of the largest limitations
in the LHC)

The electron density inside the chamber causes:

» Tune shift along several bunches

« Synchronous phase shift along several bunches.

» Coherent beam instabilities (single and coupled
bunch)

* Incoherent effects (beam lifetime degradation
and slow emittance growth)

Focus of this talk




The Large Hadron Collider

8 ArCS:

[LHC Design Report] 23 “FODO” cells per arc:
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Focusing Quadrupole
3x Dipoles

Defocusing Quadrupole
3x Dipoles

« 8 Insertion Regions:
1.

ATLAS

ALICE

Momentum cleaning
RF - Beam Instrum.
CMS

LHC Dump
Betratron cleaning
LHCDb

Primary purpose of the LHC is to provide high-energy proton-proton collisions
to the experiments (ATLAS, CMS, ...) which study their byproducts.



FiIIing scheme
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Beam is composed of repeating
patterns (trains):

2x48 bunches,

3x48 bunches.
Bunches spaced by 25ns.

* 200ns: Small gap, e-cloud 48 bunches (25ns spacing)
partially resets. o

« 800ns: Big gap, e-cloud
almost completely resets.




Recognizing electron cloud effects
Emittance growth at injection energy:
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Extra beam losses during
collisions (6.8 TeV):

—— Burn-off
al —— Other

M Mo

a
ﬂw /“L/NL AL

800 900 1000 1100 1200
Bunch slots [25 ns]

* Most losses come from inelastic
proton-proton collisions (“burn-off™).

« Additional losses with a pattern that
grows within the “train” of bunches.
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Universal characteristic of e-cloud to grow from the head to the tail of a beam.



Outline

1. Introduction to electron clouds
and the LHC

2. Scenario 1: Emittance growth at
Injection energy (450 GeV)

3. Scenario 2: Extra beam losses during
collision (6.8 TeV)

10



Electron cloud pinch

Incoherent electron cloud effects concern the motion of single particles under
the influence of the non-linear forces induced by the electrons.
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« Motion of electrons is very complex — Complex electron densities —
complex induced forces.
* Protons from the beam are “moving” within these complex forces due to:
 Betatron oscillations: up-down, left-right
« Synchrotron oscillations: back-forth in “time”

— Increase of proton oscillation amplitude — losses + emittance growth.
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Electron cloud pinch

« Collective effect Weak-strong approximation:

. Affects single-particle dynamics « Compute evolution of electron

- E-cloud dynamics: ~ ns - cl-oud once (PyECLOUD).

 Single-particle dynamics: ~ minutes ) Fleld-mgps o .several G.B'

. Complex forces * Re-use in particle tracking code
(Xsuite).

» Simulate non-linear lattice of LHC.

7=0.47 (5.75 0;)
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« 3D grid (~400°2 points) of scalar potential ¢, interpolated to
provide symplectic kick, with a thin-lens approximation.

12



E-cloud setup

E-cloud exists across the full length of the LHC beam pipe.
Different magnetic fields lead to completely different e-clouds.
Most significant contributors:

1. E-cloud in arc dipoles (MB) (66%)

2. E-cloud in arc quadrupoles (MQ) (7%)

We place one interaction for each three dipoles and each quadrupole.

00— T TP g::m
AN ! ! 12.5 p.[m] * Betatron and dispersion
N\ | I :
e ERN ; A\ Vi functions stay the same
. I MB
= 1l _ VAR between each cell.
=% i i Iz * Approximate SEY as
AT/ :: L0 uniform everywhere. Large
: E . i . i : lo.5 fluctuations in reality.
: 0o  Effect from saturated
450 1500 1550 1600 ) e—CIOUd.

s [m]

LHC FODO Cell
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E-cloud setup

* One dipole-type e-cloud per half-cell

—> 46 Interactions per arc

—> 368 interactions.

* One quadrupole-type e-cloud per half-cell
—> 45 interactions per arc

- 360 interactions.

Tracking time per e-cloud type (~360
Interactions) is about as much as rest of the
lattice (11k tracking elements).

1.20 - 10'! ppb, MB + MQ
——  Without e-cloud

— 9& =0.001 + 0.012 pim/h

des = 0.110 £ 0.018 pm/h
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Total simulation time: ~ 7 days for 10M turns (15 minutes of beam time),
20 000 particles, per Nvidia V100 GPU
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Electron cloud induced forces

Emittance growth is driven by the
e-cloud in the main quadrupoles.

Electron clouds induce time-dependent
forces.

: : . 500
Forces are highly non-linear in the
vicinity of large local densities. = 2501
> 0
o

Clouds forming in quadrupoles exhibit @ _,|

strong density in the center. 5001

In the LHC, = 90° phase advance
between main quadrupoles in the arcs.
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Optics and incoherent e-cloud effects at injection

Off-momentum Frequency Map

Analysis

Synchro-betatron resonances identified

as cause of emittance growth

(2Q,—2Q, + mQ, = 4)

Modifications to the LHC injection

optics were proposed to:

Change phase advance between
different arcs to self-compensate

Resonance Driving Terms.

a) from main octupole magnets.
b) from electron clouds in the

main quadrupoles.

New optics in operation since 2023.
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Expectations from simulation

Repeating the emittance growth

simulations:

« Emittance growth rate is not
expected to go to zero.

Additional effects not shown

here:

» Reduction of beam loss rate,

* Reduction of “halo” formation
(non-gaussian transverse beam
profile)

Simulations (and optics
modification) assume electron
cloud is uniformly distributed
along the different quadrupoles.
In reality it is not.
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Experimental measurements

» Machine studies in 2024 confirm the
positive impact on emittance.

 Positive impact also on beam lifetime,
and beam halo formation.

Unexpected feature :

» Emittance growth of “first” bunch (not

e-cloud) is sometimes increased.
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Simulating electron cloud in the
Final Focus Quadrupoles

Q1
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E-cloud in final focus quadrupoles (Inner g 0.6
Triplets) known to cause slow beam loss 9:04_
when beams are in collission. 7
E-cloud density strongly depends on 5 02
location. S
= 0.0

384 slices per triplet — 4 triplets, 1536
slices.
~4GB perslice — =6TB

not sustainable
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Strategy

An e-cloud slice can be described by a
scalar potential ¢(X, vy, {) in a thin-lens

formalism.

1. Transport slices to same location.
2. Slices commute (only depend on
X, Y, €). They can be summed.

Transport through
e-cloudslice = ====--=
Transport through
segment

[G. ladarola, CERN-ACC-NOTE-2019-0033]

z,Y,0 > Z,Y,¢
4L 9
s N
qL  0¢
Py = Py — BoPoc Oy
gL 0¢
pC'_)pC_IBPCaC

— (. y,()
= (z,C)
(z,v,¢)

¢ refers to s — B,ct, the longitudinal distance from the reference particle

__e—:qb:
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https://cds.cern.ch/record/2684858/

Approximations
e—=¢1= 6—:¢521 e—:¢’3! e—=¢41

Effective (lumped) e-cloud:

@(x,y,{) =
| fﬁx,f _ . ,& _ |

Zﬂba ( Brr (x — xk) +xi, Byx (y = yk) +yl’€)

(15t approximation): « Combines all slices into one scalar potential.

Courant-Snyder parameterization » Equation can be evaluated on a 3D grid, and
treated as a single slice.

fijie — Bj .
e x = F(cosu,-j+aismpij) (x—x)+ -

VBiBjsinpij (px = px,i) +X;

(2" approximation):
Constant phase advance fti; ~ 0

(3rd approximation): L
No longitudinal motion  e/7°¢ = ¢

23



y [mm)]

ey L [kV]

Effective e-cloud
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» Non-linear time-dependent forces.

» Forces become exceedingly non-

linear at large amplitudes of
oscillation.

— (=0.1m

1 — =0m

—— (=-0.1m

Weak-strong simulations:

« Assume e-cloudisina
steady state.

« Map is constructed once in a
“pre-processing stage”, and
re-used during particle
tracking.

15
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Simulation flow

o neProcessing stage (weakstrong) | [Particletracking stage | _
| PYECLOUD simulations (CPU) | | Xsuite simulations (GPU) I
| - | - |
- ~ 8 CPU hours requency map
15t slice :
! - per slice, easy | analysis |
| nd i to parallelize | ] !
o \ETe )
| o | Emlttanhce |
: rowt
| ® reduction from | J |
B N slice ~TBto~GBin | ® |
I - — required memoryI ® I
o

per triplet

Tracking time for 1 000 000 turns, 20 000 particles in A100 GPU:
LHC lattice : 5.7 hours
LHC lattice + beam-beam : 6.1 hours

LHC lattice + beam-beam + e-cloud : 7.0 hours
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Dynamic aperture

Dynamic aperture over 1 000 000 turns,
including the e-clouds in the 4 inner
triplets (left and right of i.p. 1 and 5).

« E-cloud in triplet scales favorably
with higher intensity.

* E-cloud effects can become as
strong as beam-beam effects at low
bunch intensities.

« E-clouds are worse with larger
Secondary Emission Yield (SEY).

« SEY < 1.10 will be enough to
mitigate the effect of e-cloud in the
triplets.
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Summary

« Simulated incoherent electron cloud effects, massive simulation campaigns
with GPUs.

« Atinjection energy:
« Found in simulations the measured emittance growth.
« Unexpectedly, realized that optics could partially alleviate some of the
undesired effects.
 Optics in operation since 2023, enjoying the benefits.

* During collisions:
» Extremely complex electron cloud field-maps, requiring ~TBs of
memory.
» Developed method to simulate with sustainable memory requirements.
» Reproduced qualitative behavior in simulations (dynamic aperture).
» Reassured that measures taken for the High-Luminosity LHC Upgrade
(amorphous carbon coating) are sufficient.

Thank you for your attention!
Konstantinos Paraschou .
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Frequency Map Analysis

Beam-beam effects
60.325

60.3 ; 1
49300 62.305 62.310
Qx

62.315

Qy

60.325

Beam-beam effects &

e-cloud (in 4 Inner Triplets)

60.3201

60.3151

6036[)9.300

62.305 62.310
Qx

« Tracking over 100 000 turns, tune evaluated over:

e First 50 000 turns,
o Last 50 000 turns.

Difference in tune — tune is not constant and so trajectory is chaotic.

62.315

* E-cloud doesn’t cause a significant tune-shift (compared to beam-beam effects)
* Visible effect of e-cloud — increase of non-linearities.

29



Dynamic aperture
Tune scan

Dynamic aperture over 1 000 000 turns,
including the e-clouds in the 4 inner
triplets (left and right of i.p. 1 and 5).
Simulations varying the working point.

 E-cloud effects cause a reduction of
dynamic aperture for all tunes.

« The optimal working point remains
similar.

Simulation parameters:
Bunch intensity = 1.2 10! p/b
SEY =1.30
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Synchro-betatron RDTs
Resonance: (j—k)QI+([— )Q}

(s)
Octupole: (1) >l itime oili—k)Apy )+ (1-m) Ay

f jklm(s) 1 — e27il(j=k)Qx+(I-m)Q,]

o (oD

S ey ikl L G=R) AL +(1-m) AL, +(n—0) A, |
w,jklmno

1 — e2mi[(—k)Qz+(1-m)Qy+(n—0)Q¢]

Electron cloud:

(1) (s) =

jklmno

(z,y, ¢ Zcpm( +  (acceleration)
+223 a0k + 12 Y woar¢t+  (tune shift, chromaticity-like effects)

k
+ z* Z cP4okC yt Z poarF+  (0ctupole-like)
k k

+ ...
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Buildup simulations in Inner
Triplet quadrupoles

One beam: Two beams:
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The bunch-by-bunch pattern of the losses resembles the e-cloud buildup

simulations of the Inner Triplet quadrupoles.
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2023 Injection optlcs (phase knob) - MD
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2023 Injection optics (phase knob) - MD
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Lie tranformations

Lie transformations are operators that describe the solution of Hamiltonian

SyStemS: Z(L) _ e_LHZ(O)

where : H: f = [H, f] =

)

OH 0f 9f 0H
g, Op; _ Oq; Op; ) IS the Poisson bracket

Example: it i85t ik

/ Transport through element

Transport through element with Hamiltonian fx

with Hamiltonian fij

Transport through element
with Hamiltonian ¢ .
J
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Lie transformations

¢j : Hamiltonian of e-cloud
interaction for one slice
at location |

fi j :Hamiltonian of transport
between location i and |

I |
T T / Sk : Hamiltonian of transport

e:fif:e:¢f:e:fjk: between location j and k

Step 1:  use property e:_f:ezg:e:f: - exp(; e:_f:g :)
e:ﬁj:e:¢j:e:fjk: — e:ﬁj:e:fjk:e—:fjk:e:¢j:e:fjk:
= efiite'fikiexp (: e:_ff":t,bj :)
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Lie transformations

» \We have transported the
e-cloud slice (without
approximation).

* We need to simplify

/" / exp (: eIk :)

e:ﬁf:e:ff":exp( e~ Jik: P )
:f:

Step 2:  use property e’/ g(x) = g(efa:)

eIk g (x,y,0) = ¢j(e~Fikx, e Tikiy, eIk )
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Lie transformations — Courant-Snyder parameterization
e TR pi(x,y,0) = (eI *x, &Ky, eIk )

Courant-Snyder parameterization (first approximation):

Beam 1

e:fij:x - ﬂ.}

Bi (cos pij + @ sin ;) (x = x;) + 31
l

VBiBjsinpij (px — Px,i) +X;j
Constant phase advance (second approximation):

pi; =~ 0

45.0 1

TranSformation becomeS' e:fij 3x f— ﬂ_" (x — xi) + 'xj 44-?9:925 19950 19975 20000 20025 20050 20075
“ ]

s [m]

Third approximation: longitudinal coordinate doesn’t change. e:f ©J :C — C |
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Super-e-cloud

eI g (x,9,0) = ¢ (e Tx, ety eIk y)

Ba,j
ﬁx,k

e:—fjk=¢j = ¢; (x — zx) + x5,

Eauation is manageable in this form.
¢, is defined on a 3D grid, we just need to reinterpolate based on the above

equation.

&(x,y,0) =
| 1 > 3 4 (57:8) ]
Z(bi (\’gji (x -xk)+xi,\/ﬁ (y -)?k)+yc',6")

« 1536 simulations each to:

» Do electron cloud buildup,

* Detailed bunch passage “pinch”.

» Combine on-the-fly to same 4 files.
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