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1. Introduction to electron clouds 

and the LHC

2. Scenario 1: Emittance growth at 

injection energy (450 GeV)

3. Scenario 2: Extra beam losses during 

collision (6.8 TeV)

Outline
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1. Introduction to electron clouds 

and the LHC

Outline



SEY Curves for different surfaces

Electron clouds
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1. Electrons are introduced into the beam chamber                                     

(residual gas ionization / synchr. rad. + photoelectric effect)

2. Electrons are accelerated by passing bunches

and impact on beam chamber.

• Depending on energy of electron 

and Secondary Emission Yield of 

surface, electrons can be emitted.

If conditions allow, electrons multiply

exponentially!



Electron clouds
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• Electrons multiply until a saturation is reached.

• Number of electrons quickly decays when bunches are not passing.

• Magnetic fields strongly affect the e-cloud.

72 bunch passages 72 bunch passages

Dipole: Quadrupole:



Electron cloud effects

e-
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The electron flux to the wall is responsible for

• Spurious signal for beam instrumentation

• Dynamic pressure rise

• Heat deposition (One of the largest limitations 

in the LHC)

The electron density inside the chamber causes:

• Tune shift along several bunches

• Synchronous phase shift along several bunches.

• Coherent beam instabilities (single and coupled 

bunch)

• Incoherent effects (beam lifetime degradation 

and slow emittance growth)
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Focus of this talk
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The Large Hadron Collider

• 8 Arcs:

23 “FODO” cells per arc: 

1. Focusing Quadrupole

2. 3x Dipoles

3. Defocusing Quadrupole

4. 3x Dipoles

• 8 Insertion Regions:

1. ATLAS

2. ALICE

3. Momentum cleaning

4. RF - Beam Instrum.

5. CMS

6. LHC Dump

7. Betratron cleaning

8. LHCb

Primary purpose of the LHC is to provide high-energy proton-proton collisions

to the experiments (ATLAS, CMS, ...) which study their byproducts. 

[LHC Design Report]



Magnification:
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Standard 2018 Physics filling scheme (2556 bunches) [lpc.web.cern.ch]

Filling scheme

Beam is composed of repeating 

patterns (trains):

• 2x48 bunches,

• 3x48 bunches.

Bunches spaced by 25ns.

• 200ns: Small gap, e-cloud

partially resets.

• 800ns: Big gap, e-cloud

almost completely resets.
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Recognizing electron cloud effects

Emittance growth at injection energy:

Extra beam losses during 

collisions (6.8 TeV):

• Most losses come from inelastic 

proton-proton collisions (“burn-off”).

• Additional losses with a pattern that

grows within the “train” of bunches.

Emit. growth not

from e-cloud

Emit. growth from e-cloud

Universal characteristic of e-cloud to grow from the head to the tail of a beam.
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2. Scenario 1: Emittance growth at 

injection energy (450 GeV)

Outline
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• Motion of electrons is very complex → Complex electron densities → 

complex induced forces. 

• Protons from the beam are “moving” within these complex forces due to:

• Betatron oscillations: up-down, left-right

• Synchrotron oscillations: back-forth in “time”

→ Increase of proton oscillation amplitude → losses + emittance growth.

Electron cloud pinch

Incoherent electron cloud effects concern the motion of single particles under 

the influence of the non-linear forces induced by the electrons.



Electron cloud pinch
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• Collective effect

• Affects single-particle dynamics

• E-cloud dynamics: ~ ns

• Single-particle dynamics: ~ minutes

• Complex forces

Weak-strong approximation:

• Compute evolution of electron 

cloud once (PyECLOUD).

• Field-maps of several GB.

• Re-use in particle tracking code 

(Xsuite).

• Simulate non-linear lattice of LHC.

• 3D grid (~4003 points) of scalar potential φ, interpolated to 

provide symplectic kick, with a thin-lens approximation.



E-cloud setup

E-cloud exists across the full length of the LHC beam pipe.

Different magnetic fields lead to completely different e-clouds.

Most significant contributors:

1. E-cloud in arc dipoles (MB) (66%)

2. E-cloud in arc quadrupoles (MQ) (7%) 

We place one interaction for each three dipoles and each quadrupole.

• Betatron and dispersion 

functions stay the same 

between each cell.

• Approximate SEY as 

uniform everywhere. Large 

fluctuations in reality.

• Effect from saturated        

e–cloud.
LHC FODO Cell
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E-cloud setup

• One dipole-type e-cloud per half-cell

→ 46 interactions per arc

→ 368 interactions.

• One quadrupole-type e-cloud per half-cell

→ 45 interactions per arc

→ 360 interactions.

14

Tracking time per e-cloud type (~360 

interactions) is about as much as rest of the 

lattice (11k tracking elements).

Total simulation time: ~ 7 days for 10M turns (15 minutes of beam time), 

20 000 particles, per Nvidia V100 GPU
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Electron cloud induced forces

• Emittance growth is driven by the 

e-cloud in the main quadrupoles.

• Electron clouds induce time-dependent

forces.

• Forces are highly non-linear in the 

vicinity of large local densities.

• Clouds forming in quadrupoles exhibit 

strong density in the center.

• In the LHC, ≈ 90o phase advance 

between main quadrupoles in the arcs.
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• Off-momentum Frequency Map 
Analysis

• Synchro-betatron resonances identified 
as cause of emittance growth
(2Qx – 2Qy + mQζ = 4)

• Modifications to the LHC injection 
optics were proposed to: 
Change phase advance between 
different arcs to self-compensate 
Resonance Driving Terms.

a) from main octupole magnets.

b) from electron clouds in the 
main quadrupoles.

• New optics in operation since 2023.

Optics and incoherent e-cloud effects at injection
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Optics change

“Trim” quadrupoles, 

used for tune change.

Induced phase advance change:

Effect on octupoles’ Resonance Driving 

Term (f2002):

• Small change on beta functions (< 5%).
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Expectations from simulation Old optics,

new optics

Repeating the emittance growth 

simulations:

• Emittance growth rate is not 

expected to go to zero.

Additional effects not shown 

here:

• Reduction of beam loss rate,

• Reduction of “halo” formation

(non-gaussian transverse beam 

profile)

Simulations (and optics 

modification) assume electron 

cloud is uniformly distributed 

along the different quadrupoles.

In reality it is not.

Simulation

Simulation
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Experimental measurements

Coherent beam 

instabilities

Old optics,

new optics

• Machine studies in 2024 confirm the 

positive impact on emittance.

• Positive impact also on beam lifetime, 

and beam halo formation.

Unexpected feature :

• Emittance growth of “first” bunch (not 

e-cloud) is sometimes increased.

Measurement
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3. Scenario 2: Extra beam losses during 

collision (6.8 TeV)

Outline
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Simulating electron cloud in the 

Final Focus Quadrupoles Q1 Q2A Q2B Q3

• E-cloud in final focus quadrupoles (Inner 

Triplets) known to cause slow beam loss 

when beams are in collission.

• E-cloud density strongly depends on 

location.

• 384 slices per triplet → 4 triplets, 1536 

slices.

• ≈ 4GB per slice   →   ≈ 6 TB

not sustainable

Interaction 

Point
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Strategy
[G. Iadarola, CERN-ACC-NOTE-2019-0033]

An e-cloud slice can be described by a 

scalar potential ϕ(x, y, ζ) in a thin-lens 

formalism.

1. Transport slices to same location.

2. Slices commute (only depend on    

x, y, ζ). They can be summed.

ζ refers to s – β0ct, the longitudinal distance from the reference particle

i 1 k2 3 4

...

Transport through 

segment

Transport through 

e-cloud slice

https://cds.cern.ch/record/2684858/
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Approximations

i 1 k2 3 4

...

(1st approximation): 

Courant-Snyder parameterization

(2nd approximation): 

Constant phase advance 

(3rd approximation): 

No longitudinal motion

Effective (lumped) e-cloud:

i k

• Combines all slices into one scalar potential.

• Equation can be evaluated on a 3D grid, and 

treated as a single slice.
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Effective e-cloud

• Non-linear time-dependent forces.

• Forces become exceedingly non-

linear at large amplitudes of 

oscillation.

Weak-strong simulations:

• Assume e-cloud is in a 

steady state.

• Map is constructed once in a 

“pre-processing stage”, and

re-used during particle 

tracking.
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Pre-processing stage (weak-strong)

PyECLOUD simulations (CPU)

1st slice

2nd slice

3rd slice

Nth slice

Triplet 

Maps

Particle tracking stage

Frequency map

analysis

Xsuite simulations (GPU)

Dynamic 

aperture

Emittance 

growth

Simulation flow

~ 8 CPU hours 

per slice, easy 

to parallelize 

Tracking time for 1 000 000 turns, 20 000 particles in A100 GPU:

LHC lattice : 5.7 hours

LHC lattice + beam-beam : 6.1 hours

LHC lattice + beam-beam + e-cloud : 7.0 hours

reduction from  

~ TB to ~ GB in 

required memory 

per triplet
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Dynamic aperture

Dynamic aperture over 1 000 000 turns, 

including the e-clouds in the 4 inner 

triplets (left and right of i.p. 1 and 5).

• E-cloud in triplet scales favorably 

with higher intensity.

• E-cloud effects can become as 

strong as beam-beam effects at low 

bunch intensities.

• E-clouds are worse with larger 

Secondary Emission Yield (SEY).

• SEY < 1.10 will be enough to 

mitigate the effect of e-cloud in the 

triplets.
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Summary

• Simulated incoherent electron cloud effects, massive simulation campaigns 

with GPUs.

• At injection energy:

• Found in simulations the measured emittance growth.

• Unexpectedly, realized that optics could partially alleviate some of the 

undesired effects.

• Optics in operation since 2023, enjoying the benefits.

• During collisions:

• Extremely complex electron cloud field-maps, requiring ~TBs of 

memory.

• Developed method to simulate with sustainable memory requirements.

• Reproduced qualitative behavior in simulations (dynamic aperture).

• Reassured that measures taken for the High-Luminosity LHC Upgrade

(amorphous carbon coating) are sufficient.

Thank you for your attention!

Konstantinos Paraschou
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Validation

• Focus on Q3 quadrupole (right of 

interaction point 1): Q3R1.

• 64 slices, can fit in 1TB RAM 

computers.

• Dynamic aperture simulations to test 

previous equation.

• Good agreement.

Q1 Q2A Q2B Q3
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Frequency Map Analysis

• Tracking over 100 000 turns, tune evaluated over:

• First 50 000 turns,

• Last 50 000 turns.

Difference in tune → tune is not constant and so trajectory is chaotic.

• E-cloud doesn’t cause a significant tune-shift (compared to beam-beam effects)

• Visible effect of e-cloud → increase of non-linearities.

Beam-beam effects

Beam-beam effects &

e-cloud (in 4 Inner Triplets)
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Dynamic aperture

Tune scan

Dynamic aperture over 1 000 000 turns,

including the e-clouds in the 4 inner 

triplets (left and right of i.p. 1 and 5). 

Simulations varying the working point.

• E-cloud effects cause a reduction of 

dynamic aperture for all tunes.

• The optimal working point remains 

similar.

Simulation parameters:

Bunch intensity = 1.2 1011 p/b

SEY = 1.30
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Synchro-betatron RDTs

Octupole:

Electron cloud:

(acceleration)

(tune shift, chromaticity-like effects)

(octupole-like) 

Resonance: 
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One beam: Two beams:

The bunch-by-bunch pattern of the losses resembles the e-cloud buildup 

simulations of the Inner Triplet quadrupoles.

Buildup simulations in Inner 

Triplet quadrupoles
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2023 Injection optics (phase knob) - MD
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2023 Injection optics (phase knob) - MD
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Lie tranformations

Lie transformations are operators that describe the solution of Hamiltonian 

systems:  

where
is the Poisson bracket.

Example:

Transport through element 

with Hamiltonian

Transport through element 

with Hamiltonian

Transport through element 

with Hamiltonian
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Lie transformations

i j k : Hamiltonian of e-cloud  

interaction for one slice 

at location j

: Hamiltonian of transport

between location i and j

: Hamiltonian of transport

between location j and k

Step 1:     use property 
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Lie transformations

i j k

• We have transported the 

e-cloud slice (without 

approximation).

• We need to simplify

Step 2:     use property 
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Lie transformations – Courant-Snyder parameterization

Courant-Snyder parameterization (first approximation):

Constant phase advance (second approximation):

Transformation becomes:

Third approximation: longitudinal coordinate doesn’t change.
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Super-e-cloud

Equation is manageable in this form.  

is defined on a 3D grid, we just need to reinterpolate based on the above 

equation.  

i 1 k2 3 4

...
• 1536 simulations each to:

• Do electron cloud buildup,

• Detailed bunch passage “pinch”.

• Combine on-the-fly to same 4 files.


