Joint DESY-Univ. Hamburg Seminar

March 29th 2022

Plasma mirrors as a path to the Schwinger limit

Henri Vincenti CEA Saclay

My team at CEA-LIDYL

CEA-LIDYL : Head C. Miron

Physics at High Intensity Program (PHI) – Theory and Modelling

Cez

I. Context and goals

II. The exascale and accuracy challenges

III. Breaking the quantum vacuum with Doppler-boosted lasers

IV. Conclusion/prospects

II. The exascale and accuracy challenges

III. Breaking the quantum vacuum with Doppler-boosted lasers

IV. Conclusion/prospects

Context: high-field Science

Leemans et al, PRL (2014) Esarey et al, RMP (2009) Wheeler et al, Nat. Phot. (2012) Corde et al, RMP (2013) Teubner and Gibbon, RMP (2009)

Context: high-field Science

What questions in fundamental physics can be addressed with PW-class lasers?

⇒ One 'intriguing' line of research: Strong Field Quantum Electrodynamics (SF QED)

Ritus, JETP (1972) Di Piazza et al, RMP (2012) Marklund et Schukla, RMP (2006)

Reach the optical breakdown of the Quantum Vacuum

Can we reach extreme light intensities approaching the Schwinger limit I=10²⁹W.cm⁻²?

« Vacuum Breakdown»

Lifetime of 'virtual' particles

$$\delta t = \frac{\hbar}{\Delta E} = \frac{\hbar}{2mc^2}$$

Energy provided by an external E-field

W = eExwith $x \simeq v\delta t = eE\delta t^2/m$ Sufficient to result in 'real' particles if: $W > mc^2$ $E > m^2c^3/e\hbar$ $> 1.32 \times 10^{18} V/m$

For a laser field ${}~~ \blacksquare I\gtrsim 10^{29}~W/cm^2$

F. Sauter, Z. Phys. (1931) W. Heisenberg and H. Euler, Z. Phys. (1936) J. Schwinger, Phys. Rev. (1951)

What are the required light intensities to observe SF-QED processes ?

Why is this interesting ?

Fundamental physics

- SF-QED dominated regimes are terra incognita in experiments
- Most theoretical predictions have not received experimental validation
- Explore the low-energy frontiers of particle physics:
 e.g. Test the presence of millicharged particles in charge-mass space not yet constrained

Gies et al (2006) Caputo et al (2019) Beyer et al (2020)

Lab astrophysics

- QED pair plasmas are expected to play a leading role in EM signatures of compact astrophysical objects (e.g. FRBs, GRBs) where critical field is exceeded.
- The understanding of their basic physics is still at an early stage and is extremely challenging in-silico

Uzdensky et al (2014) Ruffini et al (2010) Bucksbaum et al (2021)

What are the present limitations ?

How to overcome current limitations ? e-/laser collisions

A complementary path is to directly boost the laser field by several orders of magnitude!

Our approach: reflection off curved relativistic mirrors

→ The Curved Relativistic Mirror (CRM) concept

(i) Intensification by temporal intensification scales as γ focusing to a tighter spot ($\lambda << \lambda_{+}$) \rightarrow Schwinger limit could be reached with a PW laser and $\gamma > 10^{\circ}$ Landecker, **86**, 852 Phys. Rev. (1952)

But how to actually implement this in the lab? ⇒ We think that this can be done with plasma mirrors

Relativistic plasma mirrors : a feasible implementation of a CRM Cea

I. Context and goals

II. The exascale and accuracy challenges

III. Breaking the quantum vacuum with Doppler-boosted lasers

IV. Conclusion/prospects

Particle-In-Cell simulations are crucial to answer this question

Time scales : 10^{-18} s -10^{-15} s , Length scales: 10nm $- 10\mu$ m, I> 10^{22} W.cm⁻²

(i) Current/charge deposition P-M

(ii) Maxwell solver on M

(iii) Field gathering M-P

(iv) Particle advance

✓ PM focusing simulations not tractable so far with standard code

• Challenge 1 – Needs high-accuracy : Maxwell solvers induce artificial dispersion of EM waves

Development of massively parallel dispersion-free pseudo-spectral solvers

• Challenge 2 – Port to exascale computers : 3D geometry requires 10¹² cells, 10¹² particles

Development of novel parallelization strategies

The PICSAR exascale booster and WARPX codes

The PICSAR library

https://picsar.net

https://github.com/ECP-WarpX/picsar

- PIC Optimized on exascale architectures
- Massively parallel pseudo-spectral solvers
- Exascale QED library

H. Vincenti et al, Comput. Phys. Comm. (2017)
H. Vincenti et al, Chapman and Hall. (2018)
H. Kallala et al, Comput. Phys. Comm. (2019)
L. Fedeli , N. Zaim et al, NJP, in review (2021)

The WARPX PIC Code

https://warpx.readthedocs.io/en/latest/

https://github.com/ECP-WarpX/WarpX

Credit: M. Thévenet (LBNL) Credit: G. Blaclard (CEA)

- Collaborative project: LBNL, CEA, DESY ...
- 5 contributors at CEA-LIDYL
- Exascale PIC code with AMR (AmRex lib)
- Can use PICSAR (e.g. for QED)

Vay et al, JoP (2020) Myers et al, Parallel computing (2021) Vay et al, PoP (2021); E. Zoni et al, CPC (2021)

First high-fidelity 3D Simulation of harmonic focusing

10¹¹ particles

14/

20 millions CPU hours/3D simulation

IBM for Argonne National Laboratory (USA)

WarpX-PICSAR : x700 speed-up over standard codes for 3D Plasma Mirror modelling

G. Blaclard, <u>H. Vincenti</u> and J-L Vay, **Phys. Rev. E. 93**, 033305 (2017) [G. Blaclard's Phd -CEA] H. Vincenti and J-L Vay, Comput. Phys. Comm. 228, 22-29 (2018)

→ Help elucidate laser absorption mechanisms in soliddensity plasmas

L. Chopineau et al, PRX (2019) Blaclard et al, PRR, to be submitted (2022)

ightarrow Help understand light-plasma mirror interactions

N. Zaim et al, PRX (2021) A. Leblanc et al, PRL (2017)

\rightarrow Study of novel prospective regimes with PW-class lasers

- H. Vincenti, PRL (2019)
- H. Kallala and H. Vincenti, PRR (2020)
- F. Quéré and H. Vincenti, HPLSE (2021)
- L. Fedeli et al, PRL (2021)

I. Context and goals

II. The exascale and accuracy challenges

III. Breaking the quantum vacuum with Doppler-boosted lasers

IV. Conclusion/prospects

What are the maximum intensities attainable at the focus of a plasma mirror curved by radiation pressure?

3D pseudo-spectral PIC simulation with WARPX-PICSAR (\approx 20.10⁶ CPU hours) \rightarrow INCITE program - MIRA supercomputer @ Argonne lab

Only requires 30 harmonics orders \rightarrow very robust to laser-PM imperfections

H. Vincenti, PRL (2019)

Can we go beyond with radiation pressure curvature ?

Harmonic efficiency drops at long gradients!
 L. Chopineau et al, PRX (2019)

• Plasma does not act as a PM anymore (reflected field degraded)

Schwinger limit?

Direct signatures

• Directly measure the spatio-temporal profile of the reflected field :

New 'dynamical ptychography' technique

Method successfuly applied in the 100TW regime

- Perfect agreement with theory/simulations
 - L. Chopineau et al, Nat. Phys (2021)

DE LA RECHERCHE À L'INDUSTRIE

DE LA RECHERCHE À L'INDUSTRIE

Doppler-boosted lasers can boost SF-QED signatures by more than three orders of magnitude !

I. Context and goals

II. The exascale and accuracy challenges

III. Breaking the quantum vacuum with Doppler-boosted lasers

IV. Conclusion/prospects

Message #1

Co-developped a highly-accurate exascale PIC code WarpX-PICSAR ⇒ Paved the way to studies previously inaccessible

Message #2

WarpX-PICSAR pivotal to the understanding of key laser-plasma processes ⇒ high-impact physical studies

Message #3

Theory and simulations show the very high prospects of plasma mirrors as intensity boosters ⇒ Exploring SF-QED regimes experimentally tractable

QUESTIONS ?