# From Beam Diagnostics to Cosmology Explaining the Universe with gravitation dependent quantum vacuum

Vahagn Gharibyan / DESY 16.06.20

|                       | Cosmological     | Interpretation                             |
|-----------------------|------------------|--------------------------------------------|
| Observation           | (Big Bang) ∧CDM  | gravitation<br>dependent quantum<br>vacuum |
| Refshifts             | Space            | Variable constants                         |
| of the galaxies       | Expansion (SE)   | $c_z / h_z = (1+z) c / h$                  |
| Cosmic microwave      | Big Bang         | Vacuum                                     |
| background            | remnants         | Decay products                             |
| Non-luminous          | Dark             | Polarized                                  |
| gravitating masses    | Matter           | quantum vacuum                             |
| Anomalous dimness     | Accelerating SE, | $G_{Fz} > G_{F}$                           |
| of type la supernovae | Dark Energy      | $c_{z} / c < h_{z}^{3} / h^{3}$            |

# Explaining the Universe with gravitation dependent quantum vacuum

- Gravitation in accelerator laboratory
- Testing gravity with lepton beam and laser
- Observed results
- Quantum vacuum and physical constants
- Cosmological observations
- Refshifts of the galaxies
- Anomalous dimness of type Ia supernovae
- Cosmic microwave background
- Non-luminous gravitating masses

### **Gravitational fields at laboratory**

Gravitational effects are induced by

| Gravitational           | Source              |                     |                    |                    |  |
|-------------------------|---------------------|---------------------|--------------------|--------------------|--|
| Potential               | Earth               | Sun                 | Galaxy             | Virgo supercluster |  |
| U/c <sup>2</sup>        | 7x10 <sup>-10</sup> | 9x10 <sup>-9</sup>  | 3x10 <sup>-7</sup> | 3x10 <sup>-5</sup> |  |
| (1m/R)*U/c <sup>2</sup> | 10 <sup>-16</sup>   | 7x10 <sup>-29</sup> | 10 <sup>-27</sup>  | 10 <sup>-36</sup>  |  |

## **Relativistic particles in the Earth's gravity**

$$\Delta U = -U\frac{\Delta R}{E}$$

#### Cosmic rays



Time / Energy Highest energy Gravitational redshift  $\frac{\Delta E}{E} = \frac{GM_\oplus}{c^2 R_\oplus^2} H \approx 10^{-13} / km$ has been measured for keV

Mossbauer energies.

#### Accelerators



Space / Momentum Gravitational deflection

$$\frac{2GM_{\oplus}}{c^2R_{\oplus}}\frac{L}{\sqrt{L^2+R_{\oplus}^2}} = 0.2 \text{ pm / km}$$

## **Space gravitational fields**

Only the equivalence principle violating effects



Lunar Tides affecting the LEP lepton energy detected by laser Compton polarimeter



*"Effects of terrestrial tides on the LEP beam energy" L. Arnaudon et al NIM A357 (1995)* 

# **Discrete symmetries in gravity**

| M m The (weak) equivalence principle or universality of free fall discovered by Galileo |                                      |                    |                            |  |  |  |
|-----------------------------------------------------------------------------------------|--------------------------------------|--------------------|----------------------------|--|--|--|
|                                                                                         | Continue with<br>Discrete Symmetries | Limits on U∆G/G    | Method                     |  |  |  |
| posi<br>elect                                                                           | tron <b>C - charge parity</b>        | < 10 <sup>-7</sup> | Pendulum analysis          |  |  |  |
| ו•5                                                                                     | Spin <b>P - parity</b>               | < 10 <sup>-7</sup> | Spin polarized<br>Pendulum |  |  |  |
| boson<br>fermi                                                                          | on <b>energy-matter</b>              | < 10 <sup>-3</sup> | Light deflection           |  |  |  |

D. S. M. Alves, M. Jankowiak and P. Saraswat, arXiv:0907.4110 . E. Moody and F. Wilczek, Phys. Rev. D 30 130 (1984).

## Vacuum modified by fields and matter

In quantum physics, the properties of the vacuum can be modified by fields and particles via vacuum polarization. *W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936)* 

Physical constants have dynamic nature shaped by quantum interactions in vacuum. *P. A. M. Dirac, Nature 139, 323 (1937)* 

Casimir plates
$$\frac{\delta c}{c} = -\frac{11}{90^2} \frac{\alpha^2 \pi^2}{m^4 d^4}$$
Magnetic
 $\frac{\delta c}{c} = \frac{11}{45} \frac{\alpha e^2 B^2}{4\pi m^2}$  ~ 3x10<sup>-21</sup>

G. M. Shore, Nucl. Phys. B 633, 271 (2002)
Field
 $\frac{\delta c}{c} = \frac{11}{45} \frac{\alpha e^2 B^2}{4\pi m^2}$  ~ 3x10<sup>-21</sup>

The vacuum density depends on the imposed fields or conditions and defines the values of physical constants such as the speed of light and the elementary charge. Likewise the magnitude of Planck's constant h could be altered.

## Conclusions

On a way of investigating HERA beam diagnostic systematics, I had to invoke gravitation. This opened a possibility to understand the main cosmological observations within a new simple physical model escaping exotics and deficiencies in the current  $\Lambda$ CDM theory.

