A Cryogenically-Formed Capillary Discharge Waveguide for Laser Plasma Acceleration

Kelly Swanson

October 27, 2020 Joint DESY and University of Hamburg Accelerator Physics Seminar

Intense laser pulses can drive plasma wakes with large acceleration gradients

- Large accelerating fields $E_z[V/m] \approx 96\sqrt{n_0[cm^{-3}]}$ 100 GV/m (n₀ = 10¹⁸ cm⁻³)
- Bunch duration $< \lambda_p/4$ Ultrashort, fs bunches

Hooker, S.M., Nat. Photon (2013)

Preformed waveguides enable large energy gains by mitigating laser diffraction

- Pulse remains intense over Rayleigh range Z_R
- To extend acceleration length
 - → Preformed plasma channel

Preformed waveguides enable large energy gains by mitigating laser diffraction

- Pulse remains intense over Rayleigh range Z_R
- To extend acceleration length
 - → Preformed plasma channel

Radius

© 2010-2019 The Regents of the University of California, Lawrence Berkeley National Laboratory; Gonsalves, A.J., et al., PRL (2019)

ENERGY Office of Science

Laser pulse should be matched to the plasma channel to prevent spot size oscillations

Bobrova, N.A., et al., Phys. Rev. E (2001)

TECHNOLOGY & ATA

In the limit of laser depletion, lower plasma density increases energy gain

Matched guiding at lower densities leaves waveguide susceptible to laser damage

Regenerative waveguide formed by depositing gas onto cold channel walls can mitigate laser damage

- Gas 1 forms solid shell (T_f > T_w)
- Gas 2 adds on-axis density $(T_f < T_w)$

Swanson, K.K., et al., submitted

Gas-solid interface location determined by solving heat equations in both gas and solid phases

Semi-analytically solved heat equations assuming constant wall temperature, initial gas temperature and gas velocity

Ozisik, M. N., et al., J. Heat Transfer

Steady-state deposition longitudinally non-uniform

Thicker shells when transfer of heat is larger (e.g. lower wall temperature, lower velocity)

Deposition process can be controlled using wall temperature and deposition time

Shell thickness more uniform when wall temperature is near freezing temperature

Developed several waveguide iterations

Temperature distribution around channel determines radial uniformity

Aluminum

Thermal conductivity: - acrylic = 0.2 W/(m K) aluminum = 205 W/(m K)

Temperature distribution around channel determines radial uniformity

Temperature (K)

	294.5
	272.8
	251.0
	229.3
-	207.5
-	185.8
	164.0
	142.2
	120.5
	98.8
	77

Thermal conductivity: - acrylic = 0.2 W/(m K) aluminum = 205 W/(m K)

Plugs will form near channel entrance with low gas flow

For longitudinally uniform layers, high flow rate is required

Plug

Final iteration: cooled sapphire channel

Patent in progress

16

Longitudinal shell thickness measured by optical coherence tomography

Science

Shell thickness controlled using flow duration

Deposition reproducible, and multiple bursts increase thickness

Discharge pulse ablates outer layer of the nitrous oxide shell

- Discharge Current (A) Thickness (µm) ł -400 -200Discharge Delay (ns) ļ
- He facilitates discharge
- 50 nm/shot ablation rate

TECHNOLOGY & ATA PHYSICS DIVISION

Density profile evolution affected by ablated nitrous oxide

- Ablated N2O propagates inward, increasing on-axis density
- Guide maintains parabolic density profile near axis

Matched spot size and density evolve during discharge pulse

With nitrous oxide shells, density and matched spot size continue to evolve during discharge pulse

Matched spot size and density evolve during discharge pulse

Tunability in matched spot size with constant density

Tested guiding properties using the BELLA laser

- BELLA Ti:Sapphire laser (front end pickoff)
- 100 ps, 37 nJ, 87 μm

© 2010-2019 The Regents of the University of California, Lawrence Berkeley National Laboratory

Tested guiding properties using the BELLA laser

• 100 ps, 37 nJ, 87 μm

Matched spot sizes derived from propagating measured laser mode in parabolic plasma channels and compared with NPINCH channels

- 1. Regenerative capabilities
- 2. Independent control of density and channel radius

ACCELERATOR TECHNOLOGY & ATA

- 1. Regenerative capabilities
- 2. Independent control of density and channel radius

Radius

Office of

Science

DEPARTMENT OF

Improved guiding in parabolic plasma channels:

$$r_m \propto rac{\sqrt{r_c}}{n_0^{1/4}}$$

28

- 1. Regenerative capabilities
- 2. Independent control of density and channel radius

How to accelerate positrons?

- 1. Regenerative capabilities
- 2. Independent control of density and channel radius

Chiou, T.C., et al., Phys. Plasmas (1995)

- 1. Regenerative capabilities
- 2. Independent control of density and channel radius

Next steps:

- 1. High-power laser guiding
- 2. Operation in other guiding regimes

Acknowledgements

BELLA Center

A. J. Gonsalves, H. -S. Mao, T. Sipla, S. S. Bulanov, C. Benedetti, C. V. Pieronek, C. B. Schroeder, C. G. R. Geddes, E. Esarey, W. P. Leemans*

Simulations

N. A.Bobrova^{1,2}, P. V. Sasorov^{1,2}, G. Korn²

¹ Keldysh Institute of Applied Mathematics, Moscow ² Institute of Physics, ASCR, v.v.i (FZU), ELI-Beamlines, Prague

kkswanson@berkeley.edu

