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Intense laser pulses can drive plasma wakes with large 
acceleration gradients

100 GV/m (n0 = 1018 cm-3)
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• Bunch duration < 𝜆𝑝/4

Ultrashort, fs bunches

Hooker, S.M., Nat. Photon (2013)
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𝜆𝑝 ∝ 𝑛0 ≈ 10 − 100 𝜇𝑚
• Large accelerating fields 



• Pulse remains intense over Rayleigh range 
ZR

• To extend acceleration length 

Preformed plasma channel

Preformed waveguides enable large energy gains by 
mitigating laser diffraction
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• Pulse remains intense over Rayleigh range 
ZR

• To extend acceleration length 

Preformed plasma channel

Preformed waveguides enable large energy gains by 
mitigating laser diffraction
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Laser pulse should be matched to the plasma channel to 
prevent spot size oscillations
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Unmatched guidingr

w0
z

Matched spot size in parabolic 
plasma channel:

𝑟𝑚 ∝
𝑟𝑐

𝑛0
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Matched guidingr

w0
z

Bobrova, N.A., et al., Phys. Rev. E (2001)



• Interaction length:

𝐿𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛 ∝ 𝑛0
−3/2

• Acceleration gradient:

𝐸𝑧 ∝ 𝑛0
1/2

• Energy gain/stage:

𝑊 = 𝑒𝐸𝑧𝐿𝑑 ∝ 𝑛0
−1

In the limit of laser depletion, lower plasma density increases 
energy gain
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Gonsalves, A.J., et al., PRL (2019)



Matched guiding at lower densities leaves waveguide 
susceptible to laser damage
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Unmatched guidingr

w0
z

Matched guidingr

w0
z

Bobrova, N.A., et al., Phys. Rev. E (2001)

Fixed: w0 = 𝑟𝑚 Decrease 𝑛0

Laser damage

Matched spot size in parabolic 
plasma channel:
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Regenerative waveguide formed by depositing gas onto cold 
channel walls can mitigate laser damage
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Gas Gas

Cold walls Tw

Deposition

Swanson, K.K., et al., submitted

• Gas 1 forms solid shell (Tf > Tw)

• Gas 2 adds on-axis density (Tf < Tw)



Gas-solid interface location determined by solving heat 
equations in both gas and solid phases

Semi-analytically solved heat equations assuming constant wall 
temperature, initial gas temperature and gas velocity
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𝑇𝑡 = 𝛼𝛻2𝑇

Ozisik, M. N., et al., J. Heat Transfer 
(1969)



Steady-state deposition longitudinally non-uniform

Thicker shells when transfer of heat is larger 

(e.g. lower wall temperature, lower velocity)
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Low flow rate

High flow rate

*Gas freezing temperature = 153 K



Deposition process can be controlled using wall temperature 
and deposition time

Shell thickness more uniform when wall temperature is near freezing 
temperature
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*Gas freezing temperature = 153 K

Center

Entrance



Developed several waveguide iterations
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Resistive 

heaters

ANSYS



Temperature distribution around channel determines radial 
uniformity

acrylic = 0.2 W/(m K)

aluminum = 205 W/(m K)
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v.3

Acrylic

Thermal conductivity:

Aluminum



Temperature distribution around channel determines radial 
uniformity

acrylic = 0.2 W/(m K)

aluminum = 205 W/(m K)
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v.3

Acrylic

Thermal conductivity:



Plugs will form near channel entrance with low gas flow
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v.3

Plug

For longitudinally uniform 
layers, high flow rate is 

required
Gas flow



Final iteration: cooled sapphire channel
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Gas slots

Capillary

Cooling 
units

To pressure sensor

Patent in progress

Electrode



Longitudinal shell thickness measured by optical coherence 
tomography
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Raw OCT image



Shell thickness controlled using flow duration
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Growth rate = 67 um/s

10psi



Deposition reproducible, and multiple bursts increase 
thickness 
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Reproducible

Stackable



Discharge pulse ablates outer layer of the nitrous oxide shell
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• He facilitates discharge

• 50 nm/shot ablation rate



Density profile evolution affected by ablated nitrous oxide 
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• Ablated N2O propagates inward, increasing on-axis density

• Guide maintains parabolic density profile near axis

MHD code NPINCH



Matched spot size and density evolve during discharge pulse
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With nitrous oxide shells, density and matched spot size continue to 
evolve during discharge pulse



Matched spot size and density evolve during discharge pulse
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Tunability in matched spot size with constant density



Tested guiding properties using the BELLA laser
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• BELLA Ti:Sapphire laser

(front end pickoff)

• 100 ps, 37 nJ, 87 µm

© 2010-2019 The Regents of the University of California, Lawrence Berkeley National Laboratory



Tested guiding properties using the BELLA laser
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• BELLA Ti:Sapphire laser

(front end pickoff)

• 100 ps, 37 nJ, 87 µm



1 2 3 4 5
Matched spot size decreases with thicker nitrous oxide shells
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Discharge delay

Matched spot sizes derived from propagating measured laser mode in 
parabolic plasma channels and compared with NPINCH channels



1 2 3 4 5Cryogenic waveguide offers flexibility for a variety of 
applications
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1. Regenerative capabilities

2. Independent control of density 
and channel radius 



1 2 3 4 5Cryogenic waveguide offers flexibility for a variety of 
applications
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1. Regenerative capabilities

2. Independent control of density 
and channel radius 

Improved guiding in parabolic plasma 
channels:

𝑟𝑚 ∝
𝑟𝑐

𝑛0
1/4



1 2 3 4 5Cryogenic waveguide offers flexibility for a variety of 
applications
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1. Regenerative capabilities

2. Independent control of density 
and channel radius 

How to accelerate positrons?



1 2 3 4 5Cryogenic waveguide offers flexibility for a variety of 
applications
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1. Regenerative capabilities

2. Independent control of density 
and channel radius 

Near-hollow plasma channel

Chiou, T.C., et al., Phys. Plasmas (1995)



1 2 3 4 5Cryogenic waveguide offers flexibility for a variety of 
applications
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1. Regenerative capabilities

2. Independent control of density 
and channel radius 

Next steps:

1. High-power laser guiding

2. Operation in other guiding 
regimes
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