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Concept of Transfer Map
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A set (six) of functions of canonical coordinates. It’s called symplectic if its Jacob is symplectic. 

).( )z(s)z(s 12 21M →=

abbreviated map notation



Concatenation of Maps
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If we have the transfer map for each individual elements:
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Then the transfer map for the combined elements is given by

nested functions31M →
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Property of Symplectic Maps
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Jacobian of a map:                                    constant J matrix:

Symplectic condition:

Specifically, R-matrix is given by J(M)|x=px=y=py=δ=l=0. So it is sympletic as well.
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Hamiltonian and Transfer Map for a Sector Bend Magnet

Use s as the independent variable, Hamiltonian in the paraxial 
approximation is given by,
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Solving the Hamiltonian equations, we obtain the transfer map of a sector 
bend:

where L is the length and θ = L/ρ the bending angle of the dipole.
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Transfer Map for Thin Quadrupole and Sextupole
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Transfer map is given by a kick:

where f is the focusing (in horizontal plane) length of quadrupole and  κ is the 
integrated strength of sextupole.
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Periodic Cell: FODO
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How to compute the Courant-Synder parameters and dispersions?
For simplicity, we can use thin-lens approximation for quadrupoles,
and small angle approximation for dipoles, and no gaps between any 
magnets.

What’s the problem if we use these FODO cells to build entire ring?
Why do we need to introduce sextupole magnets? How they work?
Can we do better?

φ/2 φ/2
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Courant-Snyder Parameters
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Matrix of periodic system:                                                Rotation matrix:

where A-1 is a transformations from physical to normalized coordinates:

We have:
1ARAM −=

A is an “ascript” and is not unique. Since two-dimensional rotational group is 
commutative AR(q) is also an ascript. Courant and Synder choose to have A12=0.
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Linear Optics
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Using the transfer map of the cell and the R-matrix, we find that the 
betatron phase advances in both planes are the same µx=µy=µ and given by,

where L is the cell length. The beta functions at the beginning: 

and the periodical dispersion: 
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No surprises. They agree with the well-known results.
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To the first-order of δ
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Make a similar transformation to obtain the feed-down effects from the
dispersive orbit,
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where the dispersive map is given by,

00 |)][)( =====≡= lpyypxxJ(R 00 MMJ ηηη δ
Introducing a Jacobian operator, we find the matrix with dependence of δ:

Like the R-matrix, it is symplectic.
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Linear Chromaticity
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Betatron phase advances up to the first-order of δ:

where κf,κd are the integrated strengths of the sextupoles. We can set their 
values:
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to cancel the linear chromaticities in both planes. The settings are expected 
for the local compensation to the chromatic errors by quadrupoles.
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To the second-order of δ
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Make a similar transformation to obtain the feed-down effects from the
dispersive orbit,
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Using the Jacobian operator, we find the matrix with dependence of δ:

Like the R-matrix, it is symplectic.
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where the first-order dispersion
is found in the same way as the
zeroth-order one, we have
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Second-Order Beta Beating

• half integer 
resonance seen

• not good if 
µ >1350
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The beta functions at the beginning of the cell, up to the second-order of δ:
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Second-Order Chromatic Effects
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The betatron phase advances up to the second-order of δ:

Comparison to a numerical simulation in LEGO in a ring that consists of 101 900 cells.
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Transfer Map for Thin Quadrupole, Sextupole, Octupole, and Decapole

,

),(
6

)3(
6

,

),6(
24

)3(
6

)(
2

,

6

5

2222
4

3

42242222
2

1

l=

=

−+−+++=

=

+−−−−−−−=

=

M

M

M

M

M

M

,

y

x

δ

yxxyyxyoxy
f
yp

y

yyxxyxxoyx
f
xp

x

ξκ

ξκ

Transfer map is given by a kick:

where f is the focusing (in horizontal plane) length of quadrupole and  κ, ο, ξ are the 
integrated strengths of sextupole, octupole, and decapole respectively.
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Cell with Nonlinear Elements
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Four-Order Chromatic Effects
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The betatron phase advances in the cell up to the fourth-order of δ:

Comparison to a numerical simulation in LEGO in a ring that consists of 101 900 cells.
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Beta Functions and Phase Advances within cell
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The beta functions in region 0<s<L/2, up to the third-order of δ:

no δ dependence !
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Final Focusing System of a Circular Higgs Factory

Sextupoles for local compensation

βy
*=0.002 m, βx

*=0.02 m, L*=4 m
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Compensation of Higher Order Chromatic Optics in FFS

1) Brinkmann sextupoles for third-order chromatic phase advances. 2) Octupoles for fourth-order ones.
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Differential Algebra

Given a function,

We know that its derivative

In particular, for x=2, we have

Rules:

Compute: 

Result in:

Analytic                                                          TPSA

Starting:
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MBA Cell of PETRA IV
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Dynamic Aperture of V15.7

1) Moment aperture is 2%. 2) Synchrotron oscillation is on. 3)Injection emittance: 19 nm.
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Chromatic Betatron Tunes of V15.7

Is it safe to cross the half integer resonance? Yes or No

Limitation of momentum aperture
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Chromatic Optics of V15.7
β[m]                          α ν η[m]                       η’

• order: 0

2.166646e+01 3.763094e-08 1.641800e+02 2.901876e-15    -2.219531e-16

3.691501e+00  -1.317824e-07 6.827000e+01 0.000000e+00 0.000000e+00

• order: 1

-6.299379e+01 6.191145e+00 5.009030e+00    -5.975198e-08   -2.044546e-09

-6.468853e+00   -4.042345e+00 5.010832e+00 0.000000e+00 0.000000e+00

• order: 2

3.092426e+03   -8.370666e+02 1.079988e+02 1.181970e+01 4.024854e-01

-3.950714e+03  -4.777085e+02 5.711957e+02 5.087100e-14 3.671072e-14

• order: 3

-3.373562e+05 1.864965e+04    -3.813990e+03    -4.763566e+02   -1.935361e+01

5.228626e+04   -4.638407e+03 1.831766e+02 3.376327e-12    -3.738076e-12

• Differential algebra
• Symplectic maps
• Accurate derivatives
• Arbitrary order
• Include coupling
• Written in C++
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Sextupole and Octupole Families and Their Strengths

Names V15.7 Octupole Solution
K2[m-3] K3[m-4] K2[m-3] K3[m-4]

SD1A -427.39 -424.50 -136222.56
SF2A 378.66 378.74 -30569.90
OF1B -85229.93
SD1B -367.77 -371.70 271306.62
SD1D -367.77 -371.70 271306.62
OF1D -85229.93
SF2E 378.66 378.74 -30569.90
SD1E -427.39 -424.50 -136222.56

1) Reflection symmetry is retained. 2) All cells are identical.
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Chromatic Betatron Tune of Octupole Solution

Solution of chromaticity: ξ1=5, ξ2=150, ξ3=-4000, in both planes
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Dynamic Aperture of Octupole Solution

1) Moment aperture increases to 3%. 2) No crossing of half integer resonance. 3) But dynamic aperture is smaller.
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eRHIC
Version 5.0, Tepikian Layout                                       

IP 6

7              9             11            1                3.             5
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Dynamic Aperture of eRHIC Lattice 

Momentum aperture is 0.3% consistent with momentum bandwidth

wall of chromaticity

• Reference emittances
 horizontal 24 nm
 vertical 12 nm

• Synchrotron oscillation: on
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Improved Momentum Aperture of eRHIC Lattice

Momentum aperture increases from 0.3% to 0.8%               Chromatic coupling resonance is seen

8/6/2019 Yunhai Cai, Accelerator Physics Seminar at DESY,  Hamburg, Germany 31



Strengths of Families of Sextupoles in ERHIC                                                                          

Chromaticity up to sixth-order of δ is well compensated.
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Summary

• We have developed an efficient and accurate method of compute 
chromatic optics using symplectic maps along with conventional optimizers 

• We found that octupoles can be very useful to compensate chromaticity 
when there is no places for additional sextupoles

• PETRA IV lattice:
o Crossing half integer resonance can be dangerous
o Strictive momentum aperture of V15.7 lattice should be 1.5%
o Momentum aperture can be increased to 3% with more octupole families but with a 

smaller dynamic aperture 
o A smaller dynamic aperture could be acceptable if beta function at injection point is 

increased and injecting emittance is reduced
o Pole tip radius may have to be reduced from 13 mm to 10 mm to accommodate the 

stronger octupoles, which can be combined to quadrupoles
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