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LBNL BELLA (BErkeley Lab Laser Accelerator) Center

houses four main laser systems
1Hz-1PW class laser for

5Hz-100TW class laser for LPA-
Thomson Gamma rays source

‘Brlam

1kHz-1TW class laser for
medical and UED research




BELLA PW system!l:

High-quality, stable, well-characterized 1 Hz Petawatt laser
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Strategy report for advanced accelerators from DOE covers laser and beam driven plasma + dielectric
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LPAs are operational at plasma density: 10'® — 108 cm™

. . Next step 6-10GeV with 2-4x10Ycm3
= Laser-plasma interaction length:
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Energy gain, YVounch

Guided LPA: For given laser energy, the energy gain is larger than in

25000

20000

15000

10000

5000

unguided LPAs due to lower density and longer length!4]

Laser energy, U [J]

— Unguided LPA (nonlinear/bubble)
— Guided LPA (quasilinear)
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Pre-formed waveguide can mitigate diffraction to increase acceleration
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Plasma channels measured using

group velocity and centroid oscillation techniques
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“Heater” laser to increase channel strength

& guide laser pulses at lower density

* Nanosecond pulse locally heats plasma through Inverse
Bremsstrahlung (I1B)!
*absorption of photons by free electrons
* Electron density distribution is changed
*n, reduces
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Simulation shows non-linear bubble regime
with multiple electron bunches
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Electron beams with energy up to 7.8GeV observed

i 17 -3
Experiment 3.4x10-7cm Experiment 2.7x10cm3
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Lanex screen before magnet shows beam divergence

down to 150 urad FWHM

Shots shown are based on whether beams are well centered along beamline. Most shots do not pass
through the diagnostic acceptance (white dashed circle).
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Multistage coupling of two independent LPAs successfully demonstrated with 40 TW laser
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BELLA Center: Timeline of LPA Achievements in view of PR department

CONTINUOUS PROGRESS

Since its beginnings in the mid 1990s, BELLA has been in the
forefront of LPA performance, and recently continued its string
of energy records by producing 8-GeV electron beams.

In a separate achievement, BELLA has demonstrated “staging,” 2 D_IA, _ 

the use of one LPA as the input to another, whichﬁwill become——
key to achieving the highest energies. ;
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The rise of ion beam therapy started at Berkeley Lab

1946 E. Lawrence & R. Wilson (later founded Fermi Lab) recognized
potential of Hadron therapy during calculation of radiation shielding.

1954 First human cancer treatment at 184-inch cyclotron.
1955 First treatment with helium ions (C. Tobias).

1967 LBL's Heavy lon Linear Accelerator (HILAC) was built. C. Tobias
et al., started investigating heavy ion cancer therapy.

1970s heavy ions from HILAC were piped to Bevatron (Bevalac).
Long-term clinical trials establish biomedical properties of heavy
ions, resulting in first evidence for safe and effective treatment of
cancer.

<1993 ~3000 patients were treated at 184-inch Cyclotron and

Bevalac.
https://newscenter.lbl.gov/2010/10/18/ion-beam-therapy/



https://newscenter.lbl.gov/2010/10/18/ion-beam-therapy/

Carbon ion radiotherapy offers superior dose conformity in the treatment of deep-seated malignant tumors

compared with conventional X-ray therapy

Peak-to-Plateau ratio of the RBE (a/b) is larger
in carbon ion beams than for proton beams.

101 Spread out the Bragg Peak
9 - X-ray to match tumor volume

&4 \ /
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Relative dose (considering biological effect)
o
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Depth from the body surface (cm)

Graph courtesy of Hirohiko Tsujii et al., Radiological Sciences, 50(7), 4, 2007

RBE: Relative Biological Effectiveness

OER: Oxygen Enhancement Ratio

Higher ratio is better.

3.0 2.0 1.0 0

RBE represents the biological
effectiveness of radiation in the
living body. The larger the RBE,
the greater the therapeutic effect
on the cancer lesion.

Gamma-ray/
X-ray

Protons
Helium
Negative pions
Carbon
Fast neutrons
Neon
Silicon

Argon

Lower ratio is better.

0 1.0 2.0 3.0

OER represents the degree of sensitivity
of hypoxic cancer cells to radiation.

The smaller the OER, the more effective
the therapy for intractable cancer cells
with low oxygen concentration.
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Prostate cancer irradiation represents improvements of radiotherapy technology

Schematic 200 kV RT

Linac IMRT

Linac 3D-CRT

Protons

Figure 1 | Prostate cancer radiotherapy 1935-2010. Prostate cancer irradiation is a good example of the improvement of radiotherapy technology
over the past decades. By increasing the beam energy and the precision of the targeting, it was possible to escalate the dose to the prostate
without exceeding the tolerance dose of healthy tissues; allowing the move from palliative irradiation to curative treatment. Abbreviations: 3D-CRT,
3D conformal radiotherapy; IMRT, intensity modulated radiotherapy; RT, radiotherapy.

Thariat et al., Nature Reviews Clinical Oncology 10:52-60, 2013



Ultra-high instantaneous dose-rate FLASH

increases differential response between normal and tumor tissue

WORKSHOP ON UNDERSTANDING HIGH-DOSE,
ULTRA-DOSE-RATE AND SPATIAL FRACTION-
ATED RADIOSURGERY

Co-Sponsored by National Cancer Institute and the Radiosurgery Society®

Tuesday, August 21, 2018

RESEARCH ARTICLE

RADIATION TOXICITY

Science Translational Medicine 6:245ra93 (2014)
Ultrahigh dose-rate FLASH irradiation increases
the differential response between normal

and tumor tissue in mice
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First Petawatt experiments at high repetition rate and statistical relevance revealed new

physics of acceleration mechanism
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Setup: Tape-drive target and MCP-based
Thomson Parabola Spectrometer adapted
for rep-rated experiments.

Experiment: Laser pulse duration scan with 70
consecutive shots obtained at 0.5 Hz rate

S. Steinke et al., under review



Larger laser spot size results in achromatic divergence and unprecedented charge density

proton beams

13 micron Kapton:

F |
Gy . Gy Gy Gy
0 0

y .
110 0 42 13.9 0 6.4

5.4 MeV 63MeV 7.1 MeV 8.8 MeV

Gy . Gy T
269 0 99 0

2 0 15.5 6.4 MeV

5.6 Me:

Qs

8.6 MeV

38

: in-house charge response calibration at NDCX-ii [J.H. Bin et al., RSI 90, 053301 (2019)]

r + X 0 adapted from Processed RCF data
Niirnberg et al., RSI 80, 2009

- ® 5um @ BELLA
s ® 2um @BELLA * 10*? protons > 1 MeV
54  Strongly reduced divergence (5 times)
=
3
2, ‘ Charge density exceeds values from large single
a 10f = . shot laser systems*
o= === —. -4 - : Ideally suited for subsequent beam transport
0 02 04 06 08 10

Energy/Peak energy

S. Steinke et al., under review *J. Schreiber et al., RSI 87, 071101 (2016).



Experiment setup for determining capture efficiency and emittance

"Q"

y Tapedrive & % %
s, \ APL cap on ";i‘{}‘_-.

Hexapod

* 1mm x 60mm APL placed 5mm behind source

e APL captures 25mrad

* Proton source imaging at 300-fold magnification at
1.5m with RCF and scintillators



FLASH-Radiobiological studies enabled by BELLA-PW-driven proton beams

1. Scintillator for rep-rated alignment and tuning:

Individual images are 3-shot average

& Dipole magnet
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o -ai .
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Discharge current, i.e. focus strength
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2. Radiochromic film stacks for precise dose characterization pm—
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BELLA center is part of LaserNetUS and
provides user access to PW and HTW facilities

Goal: Bring together the high-intensity laser science community and
enable a broad range of frontier scientific research.

P

LaserNetUS

For the first time in 2019:
- 3 weeks at BELLA PW
- 4 weeks at HTT

Contact: ssteinke@Ibl.gov, www.LaserNetUS.org

Colorado State University

Advanced Beam Laboratory

Contact:

Ohio State University

Scarlet Laser Facility

Contact:

University of Nebraska - Lincoln

Extreme Light Laboratory

Contact:

Lawrence Berkeley National Laboratory

Berkeley Lab Laser Accelerator
(BELLA) Center

SLAC National Accelerator Laboratory

Matter in Extreme Conditions
Contact:

University of Rochester

Laboratory for Laser Energetics:
OMEGAEP

Lawrence Livermore National Laboratory

Jupiter Laser Facility

Contact:

University of Michigan

Center for Ultrafast Optical Science:
HERCULES

University of Texas - Austin

Center for High Energy Density
Science: Texas Petawatt Laser
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