

Emittance Tuning for the Future Circular Collider (FCC-ee)

Tessa Charles

With thanks to: S. Aumon, E. Gianfelice-Wendt, B. Holzer, K. Oide, T. Tydecks, F. Zimmermann and the entire FCC-ee optics team

DESY seminar 18.06.2019

Continuing exploration ...

Particle colliders are powerful instruments in physics for discoveries and high precision measurements because they provide well controlled experimental conditions in laboratory environment

The Future Circular Collider (FCC-ee)

FCC – an International collaboration with CERN as host laboratory:

- exploring the feasibility of several particle collider scenarios with the aim of significantly expanding the current energy and luminosity frontiers.
 - 100 km tunnel infrastructure around Geneva area
 - Lepton collider as possible first step and 100 TeV proton collider as long-term goal

The Future Circular Collider (FCC-ee)

parameter	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.1	0.44	2.0	10.9
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	>200	>25	>7	>1.4

parameter	Z	ww	H (ZH)	ttbar	
beam energy [GeV]	45	80	120	182.5	
beam current [mA]	1390	147	29	5.4	
no. bunches/beam	16640	2000	393	48	
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3	
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21	Synchrot
total RF voltage [GV]	0.1	0.44	2.0	10.9	radia
horizontal beta* [m]	0.15	0.2	0.3	1	limite
vertical beta* [mm]	0.8	1	1	1.6	MW/t
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46	
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9	
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5	
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	>200	>25	>7	>1.4	

parameter	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [1011]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.1	0.44	2.0	10.9
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	>200	>25	>7	>1.4

parameter	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.1	0.44	2.0	10.9
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	>200	>25	>7	>1.4

Geology and Civil Engineering studies, Implementation of the 100 km tunnel

Integrated FCC schedule

Figure of merit for proposed lepton colliders

Disclaimers:

- 1. This is not the only possible figure of merit
- 2. The presented numbers have different levels of confidence/optimism; they are still subject to optimisations

FCC-ee Emittance Tuning: Challenges & Constraints

$$eta_y^* = 1.6 \ {
m mm}$$

 $eta_{x,{
m max}} = 1587.97 \ {
m m}$
 $eta_{y,{
m max}} = 6971.55 \ {
m m}$

Large emittance ratio, $\epsilon_y/\epsilon_x = 0.201\%$

Vertical dispersion & betatron coupling dominate ε_v growth

Horizontal emittance:

 $\epsilon_x = \frac{C_g}{J_x} \gamma^2 \theta^3 F$

$$F_{FODO} = \frac{1}{2\sin\psi} \frac{5 + 3\cos\psi}{1 - \cos\psi} \frac{L}{I_B}$$

L: cell length l_B : dipole length ϕ : phase advance/cell

Vertical emittance:

$$\epsilon_y = \left(\frac{dp}{p}\right)^2 \left(\gamma D_y^2 + 2\alpha D_y D_y' + \beta D_y'^2\right)$$

Sources of vertical emittance growth:

- vertical dispersion D_v
- •
- betatron coupling opening angle $\sim 1/\gamma$ (here negligible) •

Correction Strategy

• Orbit correction:

- MICADO & SVD from MADx
 - Hor. corrector at each QF, Vert. corrector at each QD
 1598 vertical correctors / 1590 horizontal correctors
 - BPM at each quadrupole
 1598 BPMs vertical / 1590 BPMs horizontal
- Vertical dispersion and orbit:
 - Orbit Dispersion Free Steering (DFS)

$$\begin{pmatrix} (1-\alpha)\vec{y} \\ \alpha\vec{D}_y \end{pmatrix} = \begin{pmatrix} (1-\alpha)\mathbf{A} \\ \alpha\mathbf{B} \end{pmatrix} \vec{\theta}$$

- Linear coupling:
 - Coupling resonant driving terms (RDT)
 - 1 skew at each sextupole + skews correctors at the IP

$$egin{pmatrix} ec{f_{1001}} \ ec{f_{1010}} \ D_y \end{pmatrix} = - \mathbf{M} \; \mathbf{ec{J}}$$

- Beta beating correction & Horizontal dispersion via Response Matrix:
 - Rematching of the phase advance at the BPMs
 - 1 trim quadrupole at each sextupole

$$\begin{pmatrix} f_1 \left(\frac{\beta_1 - \beta_{y0}}{\beta_{y0}} \right) \\ f_2 \left(\frac{\beta_2 - \beta_{y0}}{\beta_{y0}} \right) \\ \dots \\ f_m \left(\frac{\beta_m - \beta_{y0}}{\beta_{y0}} \right) \end{pmatrix}_{meas} = \begin{pmatrix} f_1 \left(R_{11}, R_{12}, R_{13}, \dots, R_{1n} \right) \\ f_2 \left(R_{21}, R_{22}, R_{23}, \dots, R_{1n} \right) \\ \dots \\ f_m \left(R_{m1}, R_{m2}, R_{m3}, \dots, R_{mn} \right) \end{pmatrix} * \begin{pmatrix} k_1 \\ k_2 \\ \dots \\ k_n \end{pmatrix}$$

Sensitivity of FCC-ee to errors

Error type	$y, \mathrm{rms} \ (\mathrm{mm})$	$D_{y,\mathrm{rms}} \ \mathrm{(mm)}$
quad arc ($\Delta y = 2 \ \mu m$)	8.809	326.71
quad arc ($\Delta x = 10 \ \mu m$)	0.0	0.0
quad arc ($\Delta \phi = 10 \ \mu rad$)	0.0	2.677
sextupoles ($\Delta y = 10 \ \mu m$)	0.0245	57.13
sextupoles ($\Delta x = 10 \ \mu m$)	0.0	0.0
sextupoles ($\Delta \phi = 10 \ \mu rad$)	0.0	0.004

Correction methods applied to **only** Vertical Quadrupole Misalignments ($\sigma_v = 100 \mu m$)

Initial D_y

After orbit correction - factor 2e4 improvement

DFS - factor 50 improvement

Coupling matrix elements

MELBOURNE

Correction Strategy (1/2)

• Sextupoles strengths set to 0

- x-y orbits correction
- Rematch the tune
- Beat-beat correction
- CHECK of tunes, orbit, $\beta_{y, max}$

Coupling correction	Loop 8 times
1 step Dispersion Free Steering w/o sextupole	
• +	
1 step coupling correction	
• CHECK of tunes, orbit, $\beta_{y, max}$	Loop 8 times
1 step Dispersion Free Steering w/o sextupole	·
• +	
1 step coupling correction	
• CHECK of tunes, orbit, $\beta_{v, max}$	

- Save x,x',y,y' at the beginning of the machine
- Set sextupoles strength to 10% of their design current

(details on next slide)

Final correction

(details on next slide)

Correction Strategy (2/2)

· Sextupoles strengths set to 0 (details on previous slide) Set sextupoles strength to 10% of their design current Constant checking • x-y orbits correction Rematch the tune of the tunes and CHECK of tunes, orbit orbit avoids running • CHECK β_{ν. max} into resonances, or coupling and dispersion correction failure to find the · CHECK of tunes, orbit, with each iteration closed orbit. • CHECK $\beta_{v, max}$, then beta beat correction if necessary · CHECK of tunes, orbit, with each iteration These two • ... steps increase by 10% the sextupole strength repeated ~ 12 times • Final correction (at 100% sextupole strength) • CHECK of tunes, orbit, $\beta_{v, max}$ · Apply required corrections based upon checks

CHECK if D_{VBMS} > 0.001 m, then apply coupling and dispersion correction

Loop 10 times

Corrected lattices

• Using the misalignments and roll angles :

(increasing the IP quad misalignments out to 50 microns and 50 microrad.)

	$\sigma_x(\mu { m m})$	$\sigma_y(\mu { m m})$	$\sigma_{ heta}(\mu \mathrm{rad})$
arc quads	100	100	100
IP quads	50	50	50
sextupoles	100	100	100
dipoles	100	100	100

After correction:

Corrected lattices

THE UNIVERSITY OF

Using the misalignments and roll angles :		$\sigma_x(\mu{ m m})$	$\sigma_y(\mu { m m})$
(increasing the IP guad misalignments out to 100	arc quads	100	100
microns and 100 microrad.)	IP quads	100	100
	sextupoles	100	100

dipoles

 $\sigma_{\theta}(\mu rad)$

Vertical dispersion before and after correction

Dispersion introduced through: quadrupoles: $\Delta x = 100 \ \mu m$, $\Delta y = 100 \ \mu m$, $\Delta \theta = 100 \ \mu m$ sextupoles: $\Delta x = 100 \ \mu m$, $\Delta y = 100 \ \mu m$, $\Delta \theta = 100 \ \mu m$ dipoles: $\Delta x = 100 \ \mu m$, $\Delta y = 100 \ \mu m$, $\Delta \theta = 100 \ \mu m$

Beta beat after correction

Corrected Lattices results

Using the misalignments and roll angles and field errors of :

	$\sigma_x(\mu{ m m})$	$\sigma_y(\mu { m m})$	$\sigma_{ heta}(\mu \mathrm{rad})$
arc quads	100	100	100
IP quads	100	100	100
sextupoles	100	100	100
dipoles	100	100	100
BPMs	20	20	150

*BPM error relative to quadrupole position

After correction:

Dynamic and Momentum Aperture

MELBOURNE

	$\sigma_x \; (\mu { m m})$	$\sigma_y~(\mu{ m m})$	$\sigma_{ heta} \; (\mu { m rad})$
arc quadrupoles	100	100	100
IP quadrupoles	50	50	50
sextupoles	100	100	0

Improving Dynamic and Momentum Aperture Using PSO

 A particle swarm optimiser (PSO) is an evolutionary algorithm with both cognitive and 'social' components

Whilst:

- keeping sextupole pairs for –I transform
- maintain periodicity of machine
- constraint on final focus sextupole strength
 - \Rightarrow 294 degrees of freedom

$$\begin{split} \vec{x}_{n+1} &= \vec{x}_n + \vec{v}_{n+1}, \\ \vec{v}_{n+1} &= \omega \vec{v}_n + c_c r_1 (\vec{x}_{\text{p-best}} - \vec{x}_n) + c_s r_2 (\vec{x}_{\text{g-best}} - \vec{x}_n). \end{split}$$

Accumulated set of solutions

yields an improvement of the area of momentum aperture of 18.0% compared to the reference lattice.

Change in Sextupole Strengths

Dynamic Aperture (left) & Momentum Aperture (right), before and after

Figure 2.15: Dynamic aperture (left) and momentum aperture (right) for reference lattice (black) and optimised lattice (blue). The area of dynamic aperture is improved by 3.1 % while the area of momentum aperture is increased by 18.0 %.

FCC-ee poses a challenge for emittance tuning, however with

100 $\mu m,$ 100 μrad misalignments and roll angles in arc quads, IP quads & sextupoles and dipoles, and

with BPM misalignments of 20 µm and 150 µrad,

the mean vertical emittance achieved after correction schemes applied is $\varepsilon_y = 0.123$ pm rad and a coupling ratio of 0.0071 %.

Back up slides

Comparison of costings

1 GILCU = 10⁹ ILC Units = 1G\$ 2012

Project	Туре	Energy [TeV]	Int. Lumi. [a ^{.1}]	Oper. Time [y]	Power [MW]	Cost
ILC	ee	0.25	2	11	129 (upgr. 150-200)	4.8-5.3 GILCU + upgrade
		0.5	4	10	163 (204)	7.98 GILCU
		1.0			300	?
CLIC	ee	0.38	1	8	168	5.9 GCHF
		1.5	2.5	7	(370)	+5.1 GCHF
		3	5	8	(590)	+7.3 GCHF
CEPC	ee	0.091+0.16	16+2.6		149	5 G\$
		0.24	5.6	7	266	
FCC-ee	ee	0.091+0.16	150+10	4+1	259	10.5 GCHF
		0.24	5	3	282	
		0.365 (+0.35)	1.5 (+0.2)	4 (+1)	340	+1.1 GCHF
LHeC	ер	60 / 7000	1	12	(+100)	1.75 GCHF
FCC-hh	рр	100	30	25	580 (550)	17 GCHF (+7 GCHF)
HE-LHC	рр	27	20	20		7.2 GCHF

Introduction

- Resonant de-polarization has been proposed for accurate beam energy calibration (\ll 100 keV) at 45 and 80 GeV beam energy. It relies on the relationship $\nu_{spin} = a\gamma^{a}$.
- Beam polarization is obtained "for free" through Sokolov-Ternov effect. The effect is in practice restricted to a limited range of values of machine size and beam energy because
 - of the build-up rate
 - it is jeopardized by machine imperfections (spin/orbital motion resonances) which affects the reachable level of polarization in particular at high energy.
- 10% beam polarization is estimated to be enough for the purpose of energy calibration.

Sokolov-Ternov polarization

Beam get vertically polarized in the ring guiding field

$P^{ m ST}_{\infty}=92.3\%$			$ au_p^{-1}=rac{5\sqrt{3}}{8}rac{r_e\gamma^5\hbar}{m_0C}\ointrac{ds}{ ho ^3}$
F	$-CC-e^+$	e^{-}	
E	$ au_{pol}$	$ au_{10\%}$ (*)	
(GeV)	(h)	h	
45	256	29	\leftarrow wiggler magnets needed at
80	14	1.6	45 GeV for decreasing $ au_{10\%}$
			to a couple of hours.

(*) Time needed to reach $P{=}10\%$ for energy calibration

 $au_{10\%} = - au_p imes \ln(1-0.1/P_{\infty})$

Polarization in real storage rings

A perfectly planar machine (w/o solenoids) is always *spin transparent*.

Spin diffusion may be particularly large when spin and orbital motions are in resonance

 $u_{spin}\pm mQ_x\pm nQ_y\pm pQ_s={
m integer}$

Assumed misalignments:

	IR Quads	other Quads	Sexts
$\delta x~(\mu$ m)	50	100	100
$\delta y~(\mu$ m)	50	100	100
$\delta heta$ (μ rad)	50	100	100

- BPMs are supposed perfectly aligned to the near-by quadrupole.
- Tune shift and coupling are corrected by 1204 normal + 1204 skew *thin lenses* quadrupoles.

SITROS can't treat thin lenses \rightarrow replaced by 5 mm long quadrupoles.

Seed 13, with radiation, no wigglers

	x_{rms}	y_{rms}	ϵ_{x}	ϵ_y
	(μ m)	(μ m)	(pm)	(pm)
MADX (thin)	23	22	276.4	0.04
MADX (thick)	35	22	278.4	0.04
SITROS (analytic)	34	21	262.8	0.38

Seed 13, with radiation, 8 wigglers, B_{w} for $au_{10\%}{=}1.7$ h

	x_{rms}	y_{rms}	ϵ_{x}	ϵ_y
	(μ m)	(μ m)	(pm)	(pm)
MADX (thin)	23	22	239.7	0.114
MADX (thick)	35	22	241.5	0.113
SITROS (analytic)	35	21	229.3	0.382

45 GeV optics with 8 wigglers for $\tau_{10\%}$ =1.7 h, seed 13.

