Beam stability challenges for High Luminosity Large Hadron Collider

S. ANTIPOV, CERN

JOINT DESY AND UNIVERSITY HAMBURG ACCELERATOR PHYSICS SEMINAR DESY 13/08/19

Acknowledgements

D. Amorim, N. Biancacci, X. Buffat, E. Carideo, E. Metral, B. Salvant, and many others (Accelerator and Beams Physics Group, CERN)

J. Mitchell, D. Valuch (RF Group, CERN)

C. Accentura, F. Carra, J. Guardia (Technology Department, CERN)

A. Oeftiger (GSI)

A. Burov, V. Lebedev (FNAL)

Large Hardon Collider

ATL

_ LHCb-

	and a second of the second of	
	Peak Lumi	1.5x10 ³⁴ cm ⁻² s ⁻¹
2	Top energy	6.5 TeV
	Ring circumference	27 km
A. 17-12	Beam intensity	10 ¹¹ p, 2556 b.
	Transverse emittance	2.0-2.5 μm, norm. rms
- under an	b* in collision	40 cm
and the	Tunes: <i>x, y, z</i>	62.31, 60.32, 2.1x10 ⁻³
The state	Avg. β-function, x & y	~ 70 m
-Life	Nominal chromaticity: x, y	15, 15
	Linear coupling: x, y planes	< 10 ⁻³
The start	Bunch length	8.1 cm, rms

CERN-Meyrin

13/08/2019

SUISSE

FRANCE

High Luminosity

Large Hardon Collider

- 11 T dipoles
- New triplet
- Powering
- Cryogenics
- Injectors upgrade
- Beam screen coating
- Collimation upgrade
- Crab cavities
- New diagnostics

30	Peak Lumi	1.5x10³⁴ 7.5x10 ³⁴ cm ⁻² s ⁻¹
	Top energy	6.5 7.0 TeV
5	Ring circumference	27 km
212	Beam intensity	1 2.3 10 ¹¹ p, 2556 2760 b.
	Transverse emittance	2.0-2.5 1.7-2.3 μm, norm. rms
	b* in collision	40 15 cm
	Tunes: <i>x, y, z</i>	62.31, 60.32, 2.1x10 ⁻³
	Avg. β -function, x & y	~ 70 m
9	Nominal chromaticity: x, y	15, 15
	Linear coupling: x, y planes	< 10 ⁻³
1	Bunch length	8.1 9.0 cm, rms

LHCb-

CERN-Meyrin

13/08/2019

13/08/2019

Impedance of LHC collimators has to be reduced for the Hi-Lumi upgrade

TCSPM prototype collimator

Fast cycling the collimator opening to determine its tune shift

Int	Q'	t _b	Lower gap	Higher gap	Cycle time	Data points	Acq length
1.2 ×10 ¹¹ p	7	1.1 ns	3.5 – 6 σ	20 σ	1 sec	~100 / gap	1000 turns
1.9 ×10 ¹¹ p	7	1.1 ns	5-6σ	14 σ	1 sec	~100 / gap	1000 turns

13/08/2019

Can use flat taper approximation for transitions

E. Carideo, M.Sc. Thesis, Universita del Sannio, Benevento, Italy (2019)

13/08/2019

The largest reduction of the resistive wall tune shift measured for Mo coating

res	sistivities (n	tivities (n Ω -m)	
Material	Model	Beam	
CFC	5000	4030 ± 370	
MoGr	1000	770 ± 70	
TiN	400	350 ± 40	
Mo	52	250 ± 40	

Massurad vs avpactad

S. ANTIPOV, JOINT DESY AND UNIVERSITY HAMBURG ACCELERATOR PHYSICS SEMINAR

13/08/2019

Lower Mo conductivity due to microstructure of the coating

and RF measurements

MoGr

Ó

15

Mo

N. Biancacci

10

5

Change of coating procedure dramatically improved conductivity of the coating

13/08/2019

Staged upgrade

Crab cavities boost integrated luminosity by 10%

DQW-TYPE CAVITY

RFD-TYPE CAVITY

- Reduce effective event pile-up density by around 20%
- Extend the luminosity levelling at up to 7.5×10^{34} cm⁻²s⁻¹

R. Tómas et al., CERN Report No. CERN-ACC-2017-0088, 2017

13/08/2019

Crab HOMs dominate transverse dynamics at the frequencies around 1 GHz

To ensure beam stability HOMs should be kept under control

E. Metral, *et al.*, <u>Beam intensity limitations</u>, 4th Joint HiLumi LHC-LARP Annual Meeting, KEK, 2014

N. Biancacci, *et al.*, <u>HL-LHC impedance and stability studies</u>, HiLumi Workshop, FNAL, 2015

The HOMs can excite collective instabilities in the beam

13/08/2019

Transverse feedback is inefficient above 1 GHz

Need shunt impedance lower 1 M Ω/m

S. Antipov et al., Phys. Rev. Accel. Beams vol. 22, 054401, 2019

13/08/2019

Cavity designs adjusted to lower HOM impact

DQW DESIGN

RFD DESIGN

S. Antipov et al., CERN, Jan 2019

S. Antipov et al., CERN, Dec 2017

Similar effect identified in other machines

Recent example – 939 MHz HOM in SPS (C. Zannini)

13/08/2019

Measuring Landau damping

How well do we know Landau Damping?

D. Möhl, H. Schönauer, Proc. IX Int. Conf. High Energy Acc., 1974 A. Chao, Phys. Coll. Beam Instab. in High Energy Acc., 1993

Can measure stability diagram by BTF

13/08/2019

Measurement of Landau Damping with antidamper

Beam as the driver of excitation

A. Burov, PRST AB 17, (2014) E. Stern et al., Proc. IPAC'18, Vancouver, May 2018

Adjusting gain and phase one can explore the full complex plane

S. Antipov et al., ABP-HSC Meeting, CERN, 19.03.18

Precise set-up needed to compare with theoretical predictions

Make sure the same mode the most unstable one in all regimes

- At non-zero chromaticity many modes are exited
- At LHC injection energy dipolar, 0 mode (normally) dominates

Control coupling, chromaticity, lattice nonlinearities

• Work at or close to nominal settings

Minimize mode shift from impedance

- Top energy and (or)
- Low intensity probe beam

Minimize effect of space charge

- Top energy and (or)
- Low intensity probe beam $UQ_{sc} \sim 10^{-4} \sim 0.1Q_s$

Procedure to measure stability diagrams

Obtaining rise time and tune shift

Transverse feedback fully qualified to act as a controlled source of impedance

Can measure Landau damping from nonlinearities at injection

Can measure stability diagrams

Accounting for space charge

Simplified model:

- Métral, Ruggiero, CERN-AB-2004-025-ABP, 2004
- Coasting beam
- Quasi-parabolic transverse distribution
- Linear space charge

Extended to bunched beams

• Bill Ng, Proc. HB'08, Nashville, TN, 2008

Interplay of octupole detuning and nonlinear space charge may be important

- Observed in tracking simulations
- <u>V. Kornilov et al., PRST-AB 11, 014201 (2008)</u>

Results are in qualitative agreement with expectations

Things to account for:

- Nonlinearities?
 - Feed-down from decapole corr
 - Hysteresis inoctupole corr
 - A few Amps (E. McLean *et al.*)
- Transverse distribution?
 - Affects the width of SD

Space charge adds Landau damping affecting the calibration

13/08/2019

Thank you for your attention

QUESTIONS?

Mo coating on different substrates

J. Guardia, Impedance Meeting, CERN, 08/24/18

13/08/2019

Roughness: Macroscopic details Stupakov model

MODELLING ROUGHNESS AS A COLLECTION OF RANDOMLY DISTRIBUTED BUMPS

ADDITIONAL IMAGINARY IMPEDANCE SCALES AS 1/GAP³

Stupakov model of roughness

MODELLING ROUGHNESS AS A COLLECTION OF RANDOMLY DISTRIBUTED BUMPS

EXTRA TUNE SHIFT DUE TO ROUGHNESS IS TOO SMALL TO EXPLAIN THE EXPERIMENTAL **FINDINGS**

1×10 K. Bane and G. Stupakov, SLAC-PUB-8023, 1993 ---- Geometric Roughness, 5 µm 1×10 Roughness, 10 µm Im Zdip (Ω /m) -----I×10 1×10² 1×10⁴ 0.5 1 1.5 2 Halfgap (mm)

$$Z_1^{\perp}(\check{S}) = -i\Gamma L Z_0 \frac{r}{2f b^3}$$

Betatron cleaning secondary collimators are the target for impedance reduction

13/08/2019

Must rely on octupole tune spread to stabilize

S. Antipov et al., Phys. Rev. Accel. Beams vol. 22, 054401, 2019

13/08/2019

Nearly ideal damper response

'FLAT' KICK CLOSE TO IDEAL DAMPER

PHASE CAN BE CONTROLLED BETTER 1 DEG

Using two pick-ups with cancelling errors

Tune setting	$\Delta Q7 \ (deg)$	$\Delta Q9 \ (\text{deg})$	ADT Phase error (deg)
0.260	3.4	-3.2	0.2
0.265	3.2	-3.1	0.1
0.270	3.0	-2.8	0.2
0.275	2.8	-2.6	0.2
0.280	2.5	-2.3	0.2
0.285	2.1	-1.9	0.2
0.290	1.7	-1.6	0.1
0.295	1.3	1.2	0.1

D. Valuch

A signle pick-up gives a phase setting error around a couple deg

S. ANTIPOV, JOINT DESY AND UNIVERSITY HAMBURG ACCELERATOR PHYSICS SEMINAR

13/08/2019

Landau damping from natural nonlinearities

Uncorrected lattice nonlinearities are expected to produce a 2.5 A equivalent octupole tune spread

Results at different chromticities agree

Interference from other modes

Simulation for LHC at 6.5 TeV and Q' = 15, S. Antipov, APB-HSC Meeting, CERN, 19.03.18