

Higher Harmonic SRF Cavities for Upgrade of BESSY II Storage Ring

Dr. Andranik Tsakanian

Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin

DESY Accelerator Physics Seminar

18 September 2018

Hamburg, Germany

- > Introduction to BESSY II storage ring
- > SRF Upgrade BESSY VSR & Highlights
- > SRF Cavity Specific Designs
- Beam Loading & Cold Parking
- HOM Power Levels in SRF Module
- > Outlook

BESSY II Storage Ring

- BESSY II is a 1.7 GeV synchrotron radiation source operating for 20 years in Berlin
- Core wavelength in the range from Terahertz region to hard X rays

BESSY II Parameters					
Lattice	DBA				
Circumference	240 m				
Energy	1.7 GeV				
Current	300 mA				
RF Frequency	500 MHz				
RF Voltage	1.5 MV				
Bunch Length	15 ps				
Emmitance	6 nm rad				

The Concept of BESSY VSR

BESSY II @ present

- Low alfa operation only 12 days/year (all beamlines) ----- Low flux
- Femtoslicing is continuously operated (only 1 beamline) -- Low flux

Can we design a system offering both possibilities simultaneously?

- Limited pulse length in storage ring $\sigma \propto \sqrt{\frac{\alpha}{\dot{V}_{\rm rf}}}$ Machine optics
- At high current beam becomes unstable
- For ps pulses, flux is reduced by nearly 100

The Concept of BESSY VSR

BESSY II @ present

- Supply short pulses down to 1.5 ps (100 × more bunch current)
- > Low α permits few 100 fs pulses
- Configure BESSY^{VSR} so 1.5 ps and 15 ps bunches can be supplied simultaneously for maximum flexibility and flux!

- Limited pulse length in storage ring $\sigma \propto \sqrt{\frac{\alpha}{\dot{V}_{rf}}}$ Machine optics Hardware (RF cavities)
- At high current beam becomes unstable
- For ps pulses, flux is reduced by nearly 100

BESSY II, SC Upgrade – BESSY VSR

BESSY II, SC Upgrade – BESSY VSR

BESSY VSR Filling Patterns

- High concentration of long bunches populated with high current (flux hungry users)
 - Few high current short bunches

(slicing bunches ...)

More short bunches (Extended)

 \geq

High Population of long & short bunches at the same time

BESSY II SC Upgrade – BESSY VSR

Simultaneous Store of long & short bunches

○ BESSY VSR

> SRF SYSTEM: 2@1.5 GHz & 2@1.75 GHz

CHALLENGES

- > CW operation @ high field levels E=20MV/m
- Peak fields on surface (discharges, quenching)
- High beam current (Ib=300mA),
- Cavity HOMs must be highly damped (CBIs)
- Exotic cavity design (damping end-groups)
- > Integrating in existing storage ring
- > Transparent Parking of SRF Module.

- > Introduction to BESSY II storage ring
- > SRF Upgrade BESSY VSR & Highlights
- > SRF Cavity Specific Designs
- > Beam Loading & Cold Parking
- HOM Power Levels in SRF Module
- > Outlook

BESSY VSR SRF Cavity Designs

- > Tune fundamental mode: field flatness, R/Q
- > Control cavity HOM spectrum (off-resonance condition) during the design.

Strong HOM Damped SRF Cavity Concepts

Cavity with HOM WG Dampers

- 5 x Waveguide dampers, HOM loads (warm)
- Large beampipe radius better HOM propagation
- ➤ Waveguides are below cutoff for fundamental → can be moved close to the cavity for heavy damping.

Simulation Results – for both Cavity (TM ₀₁₀ π -mode)														
	1.5GHz	1.75GHz	Design goal					0						
Number of Cells		4						Λ	Δ	ſ		K		
L _{active}	0.4 m	0.344 m											x → z ↓	
Frequency [GHz]	1.4990	1.7489	3 th & 3.5 th harm.										Y	
			of 499.65 MHz		4-0	Cell C	avity	/ - 1.	.5GI	-Iz ((De	sign	-FA2)
Q _{ext}	4.99*10 ⁷	4.28*10 ⁷					Ĭ	17	N i a	Λ	ΓΛ			
G [Ω]	277.63	275.42		.N 0.8			- 4-	łł	ŧΗ	-	¦/-\	<u> </u>		
E_{pk}/E_{acc}	2.32	2.30	≤ 2.4		 _ + _	 	_ 🖞 _	\¦L	44	1	<u> </u>	!	 - — —	 +
B _{pk} / E _{acc} [mT / (MV/m)]	4.98	5.13	≤ 5.3	nax	İ	İ	1	IJ.	-M	- {	1	<u>۱</u>	i I	I
R/Q [Ω]	386	380	≥ 90 per cell	<u>-</u> 0.4	_ <u>_</u> _	' 		11-	ť		1	1	- ' '	
Field Flatness - µ _{ff}	97%	99 %	≥ 95%	<mark>ы</mark> 0.2 –	- + -		/ +-	-1-		-1		-] [-	-	+
														l I
				-50	-40	-30	-20	-10 z	0 2 [cn	1 n]	0 2	20	30 4	10 5

 $\mathsf{L}_{\mathsf{active}}$

Wakefield Simulations for HOM Spectrum Control

BESSY VSR SRF Cavity Designs

Geometry Parameters for Accelerating Mode & HOM Control

- Rx2/RxC field flatness (not sensitive on other parameters)
- HOM spectrum shift is sensitive on cell-slope (for tuned fundamental)
- > Design:
 - 1. Fix iris radius (Shunt impedance)
 - 2. Ensure field flatness >95% (Rx2/RxC , fixed slope)
 - **3.** Tune fundamental frequency by r2, check B-peak.
 - 4. Check HOM spectrum

HOM Power of Single Cavity – VSR Baseline beam

Spectrally Weighted with "Baseline" pattern 1.75GHz **1.5GHz Cavity Type** HOM Power [W] Port No. 1.50 GHz Cavity $1 - FPC^{(1)}$ 'n 33.8 37.9 1.75 GHz Cavity a. $2 - WG^{(1)}$ 105.3 154.7 8.0 Spectrum [9.0 Spectrum] $3 - WG^{(1)}$ 151.4 103.8 $4 - WG^{(2)}$ 88.5 108.3 $5 - WG^{(2)}$ 109.8 90.2 $6 - WG^{(2)}$ 111.6 90.6 Wake 7 – BmP^(Upstream) 235.4 200.5 0.2 8 – BmP^(Downstream) 275.9 327.1 Total Coherent 1079 1146 0 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 None-Coherent 1293 1300 Frequency [GHz]

- Both cavities are not hitting any of beam resonances that are multiple of 250MHz (Coherent and none-coherent powers are at the same level).
- > Cornell's ERL cavities are designed to run at about 100-200W HOM Power.

Signal Spectral Weighting Technique

HOM Power of Single Cavity 1.5GHz

Design of the 1.5 GHz BESSY VSR coupler

FPC characteristics for HOMs

Test Model In FPC at higher frequencies (HOMs) the EM \succ **RF Window** waves are mainly reflected back from first RF windows – forms standing wave. True for all coax modes – TEM, TE11 ... > One should include the first half of the FPC in **Excitation Port** wake & Eigenmode simulations – to analyze how this fact reflects on HOM power balance & to avoid possible trapped mode in end-group. S-Parameters [Magnitude in dB] 0 -5 S1(1),1(1) CST TEM-mode, 2.75GHz -10 2 1026 | 880 | 733 | 587 | 440 | -15 -20 -25 Cutplane Name Cutplane Normal: 0.0.1 Cutplane Position -30 Component: rientation Outside 2D Maximum [V/m]: 1591 Frequency: 2.75 -35 1.4 1.6 1.8 2.2 2.8 3.2 3.4 3.6 2 2.4 2.6 3 Frequency / GHz

HOM Powers for 1.5GHz Cavity Full-Model (incl. FPC)

Dielectric losses are included in Wake simulation

HOM Po (Wa	ower Levels & Distrib ake Simulation - Bund	ution for Baseline-FP ch=9mm onAxis)
Ports	Model mit FPC	Model ohne FPC
FPC ⁽¹⁾	2.89 🗸	25.86
WG ⁽¹⁾	93.78 🕇	91.62
WG ⁽¹⁾	93.78 🛉	91.62
WG ⁽²⁾	87.35	87.94
WG ⁽²⁾	87.35	87.94
WG ⁽²⁾	97.00	98.26
BmP ⁽¹⁾	213.11 🛉	205.58
BmP ⁽²⁾	269.97	270.79
Sum	945.24	959.62

- With full coupler model the HOM power in FPC is reduces significantly.
- This HOM power is redistributed into the closest ports, i.e. 2 x HOM waveguides of corresponding end-group & beam pipe.

Waveguide Bend Broadband Characteristics & HOM Loads

- ➤ Low reflection (broadband) from the WG bend is for bending radius = 30mm or bR ≥ 100mm.
- TE10 mode couples into different modes after bend: TE10, TE11, TM11..., depending on excitation frequency & the cutoff of each WG mode !
- At high frequencies the TE10 is scattered from the bend into several modes, i.e. acts as mode mixer.
- At optimized 30mm inner bending radius the reflection is minimal in broadband frequency sense.

- Water-cooled HOM loads (room temperature 300K)
- Specifications: 460W per load
- Design, fabrication and tests @ JLab 60-80K

BERLinPro and BESSY-VSR SRF cavities, IPAC'17, MOPVA130 18

BESSY VSR SRF Cavities

- Baking temperature ~ 700° C, because of Helium-vessel parts.
- Nb inner surface removal ~ 200µm total is planned with BCP. The homogeneity of removal in HOM dampers should be checked.
- waveguide NbTi flanges VATSEAL gaskets will be used cold test is planned. At all other flanges – diamond gaskets.
- Looking solutions for cooled WG- \geq flange concept.

BESSY VSR: Cavity Prototypes

1.5 GHz 5-cell Copper prototype

1.5 GHz Single-cell Nb prototype

- > Introduction to BESSY II storage ring
- > SRF Upgrade BESSY VSR & Highlights
- > SRF Cavity Specific Designs
- Beam Loading & Cold Parking
- HOM Power Levels in SRF Module
- > Outlook

BESSY VSR 1.5GHz Cavity Voltages at Cold Parking Regime

Application of Wakefield Theory

Trev = 800 ns is directly related with RF buckets thus cavity frequency should be taken 1.5GHz as 3rd harmonic of 500MHz one.

Single Bunch

$$V_{s}(\omega,t) = q_{0} \cdot 2 \cdot K_{loss} \cdot \cos[\omega \cdot t] \cdot e^{-\frac{\omega}{2*Q_{L}}t} = Z \cdot I_{b} e^{-0.5 \cdot \omega^{2}\sigma_{t}^{2}} \cdot \frac{\omega T}{2 Q_{L}} \cos[\omega \cdot t] \cdot e^{-\frac{\omega}{2*Q_{L}}t}$$

 $\omega = 2 \pi \cdot f$ – resonant frequency of cavity mode

 $Z = R/Q \cdot Q_L$ – corresponding impedance (Linac def. - $P = \frac{V^2}{R/Q*Q_I}$)

Cavity Parameters

$$\begin{split} K_{loss} &= \frac{1}{4} \cdot R/Q \cdot \omega \cdot e^{-0.5 \cdot \omega^2 \sigma_t^2} \\ Z &= R/Q \cdot Q_L \quad , I_b = q_0/T \\ R/Q &= 386 \ \Omega \\ Q_L &= 5 \cdot 10^7 \ (SC) \ , 10^4 \ (warm) \\ T_{rev} &= 800 \ ns \ , \ T_{buck} &= 2 \ ns \end{split}$$

Periodic Bunch

$$\int_{l_{bo}}^{l_{bunch}(t)} \int_{l_{b}} I_{b} = q_{0}/T_{rev} \int_{l_{b}} \int_{l_{b}} I_$$

Δ

Single Periodic Bunch – Steady State Cavity Voltages

VSR 1.5GHz Cavity Impedances from Eigenmodes

	Monopole Band								
	Frequency [GHz]	R/Q [Ω]	Q _{ext}	Mode Type					
1	1.49866	386	5.00·10 ⁷	π					
2	1.49134	0.41	2.98·10 ⁷	2π/3					
3	1.47424	0.09	4.74·10 ⁷	π/2					
4	1.45785	0.05	1.60·10 ⁸	2π					

Cold Parking Monopole Mode Voltages vs. Detuning

Cold Parking – Voltage profiles for Filling Pattern Gap1

- > Introduction to BESSY II storage ring
- > SRF Upgrade BESSY VSR & Highlights
- > SRF Cavity Specific Designs
- > Beam Loading & Cold Parking
- HOM Power Levels in SRF Module
- > Outlook

Optimal Cavity Arrangement in the Module

Optimal Setup for Coupler Kick Compensation & HOM Power Equal Distribution Along the Module

Space availability in the tunnel should be checked. On the back plane is synchrotron radiation beamline. BESSY VSR
 Helmholtz-Zentrum Berlin

Coupler Kicks

RF Kick from Couplers with Same Orientation

• A. Tsakanian et al, Study on RF coupler kicks of SRF cavities in the BESSY VSR module, IPAC'18, WEPML048

• T. Mertens et al, Impact of RF coupler kicks on beam dynamics in BESSY VSR, IPAC'18, THPAF084

HOM Power Levels in SRF Module

Wakefield Simulations

- Long Range Wakes~ 20m
- Spectral Weighting of all Port Signals with Beam Spectrum
- Expected HOM Power Levels & Spectrum
- Efficiency of HOM Damping
- Analyze different cavity arrangements in the module to reach optimal operation conditions with equally distributed power portions in warm HOM loads.
- Study on different FPC locations (Upstream - Downstream) to minimize the flown HOM powers & redirect to wavguide dampers. (RF window issues)

Technically difficult to achieve due to the limited space in the lowbeta straight of the ring.

230	1
290	29

4515

230

363

4534

Upstr.

Downstr.

BmP

Total

300

380

4693

Synchrotron Light Power Depositions

HOM Power Distribution in Cold String

- The HOM power at FPC end-groups of 1.5GHz cavities located at both ends of the module are significantly increased due to the warm components – outside of the module.
- The power levels & balance inside the module is unperturbed.
- The beam pipe absorber losses are underestimated, because of sparse fieldprobe sampling in dielectric. More accurate simulations are foreseen & 1-2kW power dissipation in two absorbers is expected (see ref.).

A. Tsakanian et al, HOM power levels in the BESSY VSR cold string, IPAC'18, WEPML048
T. Flisgen et al, Estimation of Dielectric Losses in Beam Pipe Absorbers, IPAC'18, THPAF084

			HOM Power [W]				
	Compon	Deut	Baseline	Extended	Single		
	ent	Port	300mA	300mA	30mA		
	N	FPC ⁽¹⁾	6 2	57	30		
	E E	WG ⁽¹⁾	197	170	139		
	L.5	WG ⁽¹⁾	197	170	139		
	bsti	WG ⁽²⁾	166	145	133		
		WG ⁽²⁾	166	145	133		
	Ö	WG ⁽²⁾	202	180	137		
	72	FPC ⁽¹⁾	66	62	40		
	σε	WG ⁽¹⁾	255	231	148		
	75	WG ⁽¹⁾	255	231	148		
	y 1 psti	WG ⁽²⁾	183	168	134		
	i și	WG ⁽²⁾	183	168	134		
	Ű	WG ⁽²⁾	206	192	134		
	4z	FPC ⁽¹⁾	69	67	50		
	l y 1.75 G l wnstream	WG ⁽¹⁾	258	228	180		
		WG ⁽¹⁾	258	228	180		
		WG ⁽²⁾	249	229	123		
	Do	WG ⁽²⁾	249	229	123		
	Ű	WG ⁽²⁾	284	260	125		
	2	FPC ⁽¹⁾	† 33	31	26		
	ម្រួ	WG ⁽¹⁾	151	126	134		
	1.5 stre	WG ⁽¹⁾	151	126	134		
	ž t	WG ⁽²⁾	140	124	106		
	Do	WG ⁽²⁾	140	124	106		
	0	WG ⁽²⁾	176	156	110		
	BmP	Upstr.	54	47	16		
	Dilli	Downstr.	143	126	46		
	Pump.	Upstr.	20	18	7		
_	Dome	Downstr.	17	15	8		
]	BmP	Upstr.	273	241	185		
	Absorber	Downstr.	367	320	247		
	To	tal	5170	4611	3357		

- Beampipe-absorbers for more HOM damping, especially excited by interaction with warm components.
- Synchrotron light collimating bellow is required at module center.
- Every component is optimized to fulfil off-resonance condition with respect to circulating beam.

Thank You for Your Attention !