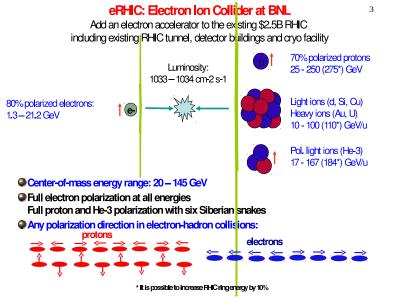

eRHIC Design Status

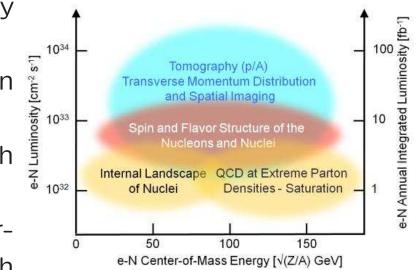
Christoph Montag Collider-Accelerator Department Brookhaven National Laboratory



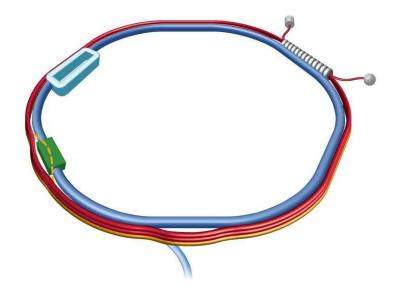
The Relativistic Heavy Ion Collider RHIC

- Two superconducting storage rings
- 3833.845 m circumference
- Energy range 25 250 GeV polarized protons, or 10 100 GeV/n gold
- Virtually all ion species, from (polarized) protons to uranium
- Two collider experiments, STAR and PHENIX
- Siberian snakes to preserve proton polarization on the ramp
- Spin rotators to manipulate spin orientation at IPs
- Operating since 2000

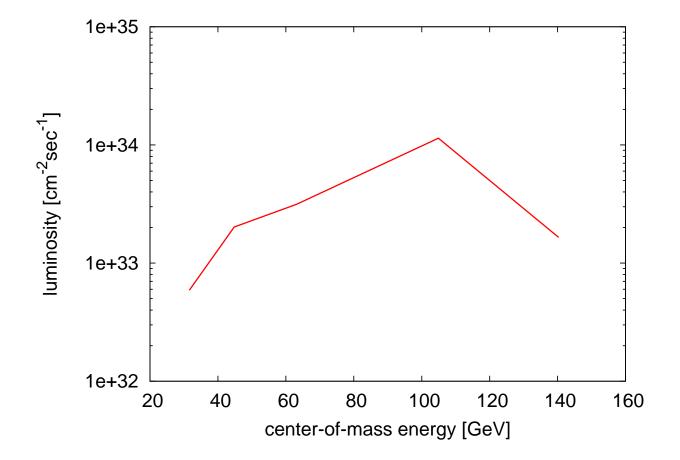
Electron-ion collider physics


- How is the nucleon spin of 1/2 composed of its constituents?
- How are gluons spatially distributed in the nucleon?
- How does the gluon density saturate?

An electron-ion collider (EIC) will provide enhanced access to the nucleon's "inner landscape"


eRHIC Design Requirements based on EIC White Paper

- High luminosity, 10^{33} 10^{34} cm⁻²sec⁻¹
- Large center-of-mass energy range, 20 140 GeV
- Longitudinal spin polarization
- of both beams
- Arbitrary spin patterns in both beams
- Large acceptance for forward scattered protons with $200 \text{ MeV/c} < p_{\perp} < 1.3 \text{ GeV/c}$, and a 4 mrad forward neutron cone



Design Concept

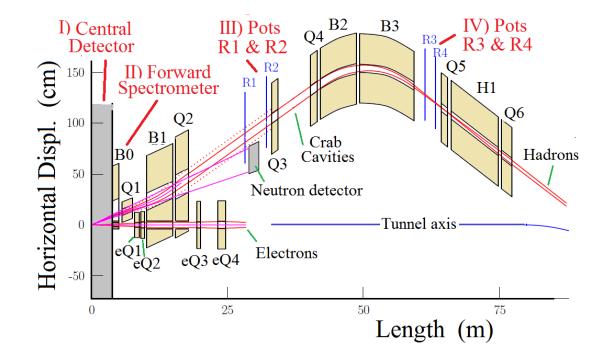
- Based on RHIC with 275 GeV polarized protons
- Electron storage ring with 5 18 GeV
- 1320 bunches per ring
- Up to 2.7 A electron current
- Very flat normalized proton emittances, $2.4\,\mu\text{m}$ hor., $0.1\,\mu\text{m}$ vert., achieved by strong hadron cooling
- \bullet Low proton bunch intensities, $0.75\cdot 10^{11}$
- Full energy polarized electron injector

Luminosity vs. center-of-mass energy

 $1.14 \cdot 10^{34} \, \text{cm}^{-2} \text{sec}^{-1}$ peak luminosity

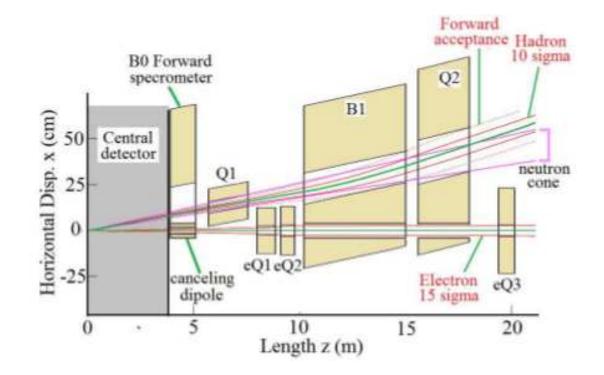
Staged Approach

- Bunched beam electron cooler for eRHIC is very challenging due to high energy and large number of bunches
- BNL is developing electron cooler for low energy gold beams - first bunched beam electron cooler in the world
- To mitigate this risk, start with a design that does not need cooling
- Upgrade to full luminosity performance once cooling becomes available


Proton Beam Parameters for Initial Phase

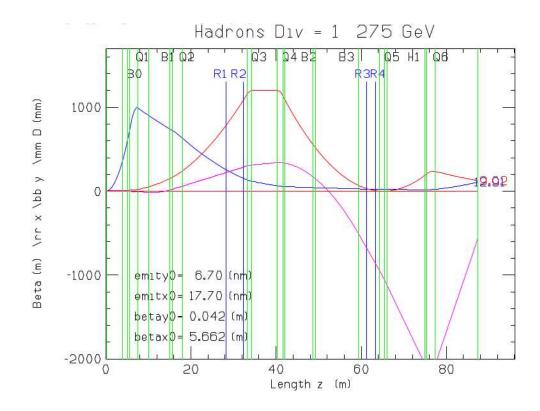
		eRHIC	RHIC
N_b		330	110
max. N_p	$[10^{11}]$	1.5	2.5
ϵ_N hor./vert.	[µm]	4.7/1.8	2.5/2.5
min. σ_s	[cm]	8	20
max. $\Delta p/p$	10^{-4}	14	5
min. β_p^*	[cm]	4.4	60
max. \widehat{eta}_p	[km]	1.2	3
min. $ au_{IBS}$	[h]	7.3	4.8
max. \mathcal{L}	$[10^{33} \mathrm{cm}^{-2} \mathrm{sec}^{-1}]$	2.9	

• Only most extreme parameters are listed - complete list in Backup Slides

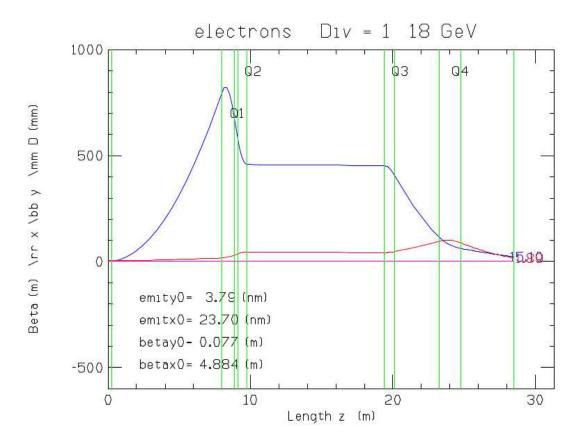

- Proton emittances can be achieved by slight shaving (vertical, 25 percent reduction) and noise injection (horizontal) long IBS growth time requires no cooling whatsoever while ensuring high average luminosity
- Necessary decoupling required for flat beams demonstrated at RHIC during 31.2 GeV d-Au run

Interaction Region Layout

- Interleaved arrangement of electron and hadron quadrupoles
- 22 mrad total crossing angle, using crab cavities
- Beam size in crab cavity region independent of energy crab cavity apertures can be rather small, thus allowing for higher frequency
- Forward spectrometer (B0) and Roman Pots (R1-R4) for full acceptance


IR Detail

Actively shielded electron beampipe through superferric hadron spectrometer B0


Hadron quadrupole Q1 with anti-quadrupole to create field-free region for electrons

Proton β -Functions at 275 GeV

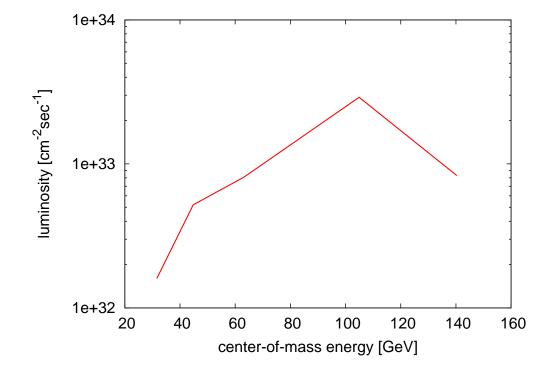
• Maximum β around 1200 m, keeping chromaticities small (10 units horizontally, 12 vertically for half IR - similar to present RHIC)

Electron β -Functions at 18 GeV

- Small chromaticities (10/15 units) due to early focusing
- corresponding number for KEKB is 38

	$s_{\sf upstream}$	L	IR	OR	B_{pole}	gradient
	m	m	cm	cm	Т	T/m
B0	3.90	1.20	15.0	40.0	-1.70	0
Q1	5.70	1.86	3.2	10.1	3.39	-105.8
B1	10.20	4.80	8.5	38.5	3.52	0
Q2	15.60	2.40	12.0	33.0	3.57	29.79
Q3	33.12	1.20	5.0	35.0	1.35	26.93
Q4	40.32	1.20	5.0	35.0	1.59	31.83
B2	42.12	6.60	5.0	35.0	-4.40	0
B3	49.32	10.00	4.0	34.0	-4.40	0
Q5	64.32	1.20	4.0	34.0	0.51	-12.73
H1*	66.12	8.75	4.0	34.0	0.0	0.0
Q6	75.37	2.00	4.0	34.0	2.20	55.0

IR Hadron Magnet Parameters

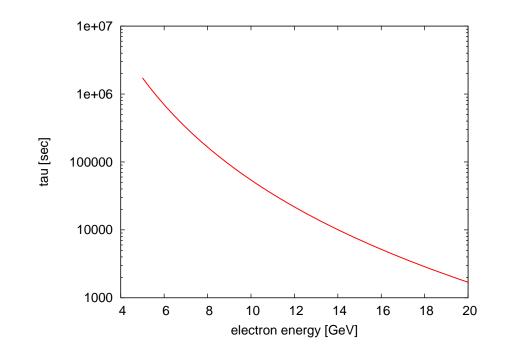

*: Helical dipoles as RHIC spin rotator

IR Electron Magnet Parameters

	$s_{\sf upstream}$	L	IR	OR	B_{pole}	gradient
	m	m	cm	cm	Т	T/m
Qe1	7.99	0.86	2.5	12.5	0.73	-29.20
Qe2	9.11	0.67	3.2	13.2	1.06	33.20
Qe3	19.38	0.75	3.2	23.2	0.37	-11.56
Qe4	23.25	1.50	3.7	23.7	0.36	9.63

- Inner radii determined by maximum 10σ proton, 15σ electron size over entire energy range
- Outer radii determined by space available between beams
- Developed conceptual designs for the most challenging magnets, B0 and Q1

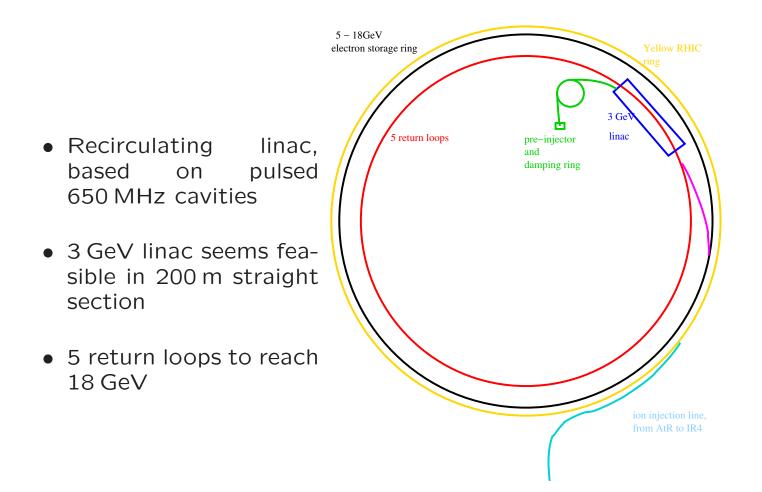
Luminosity vs. \sqrt{s} in Initial Phase



• $2.9 \cdot 10^{33} \text{ cm}^{-2} \text{sec}^{-1}$ peak luminosity with 10 GeV electrons, 250 GeV protons, including hourglass, crab crossing, and abort gap

• Electron energy 5 GeV or higher, as suggested by detector designers

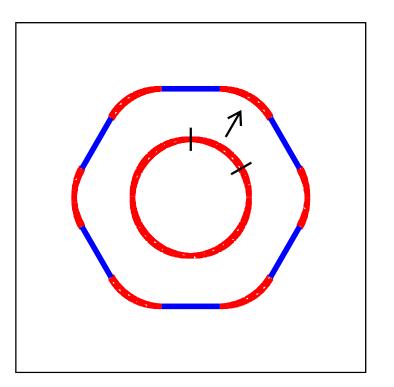
Electron polarization


Ramping would destroy electron polarization Electrons self-polarize at store due to synchrotron radiation:

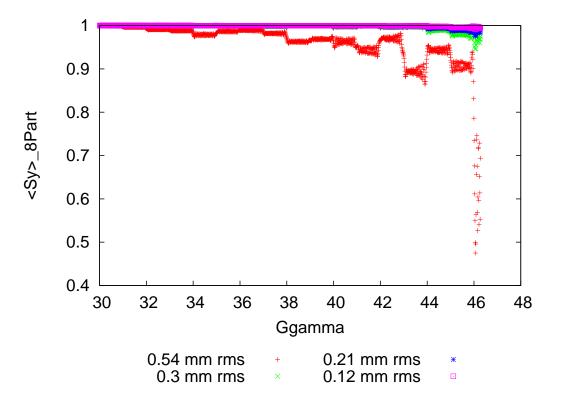
Self-polarization is not viable except at highest energies ⇒ Need a full-energy polarized injector Advantage of a full-energy polarized injector:

- Electron spin patterns with alternating polarization (as in RHIC proton fills) are required for single-spin physics
- Such fill patterns can be generated by a full-energy polarized injector
- Bunches with the "wrong" (unnatural) polarization direction will slowly flip into the "right" orientation. Time scale given by Sokolov-Ternov self-polarization time
- Bunch-by-bunch replacement at 1 Hz (360 bunches in 6 min) yields sufficient polarization even at full energy with $\tau_{S-T} = 30 \text{ min}$
- Requires good intensity lifetime > 1 h to limit beam-beam effect of electron bunch replacement on proton bunches
- Damping ring to reach 50 nC bunch charge. SLC gun produces 16 nC

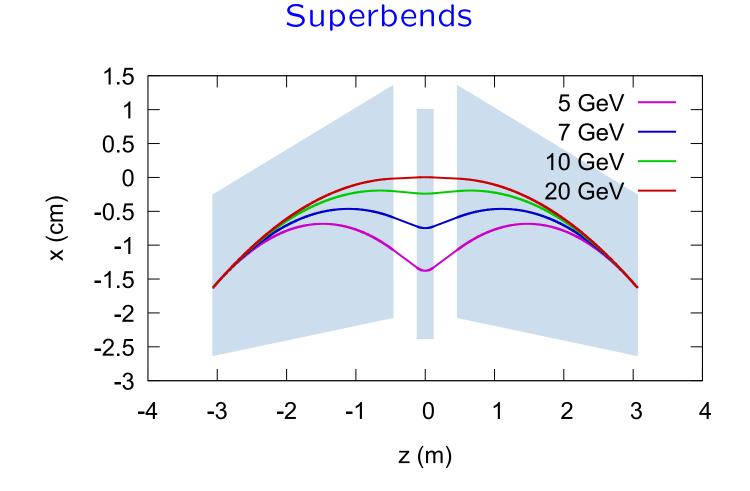
1. Recirculating linac injector


2. Highly symmetric rapid-cycling (or rapid-ramping) synchrotron (RCS)

- At 20 GeV, electron $G \cdot \gamma = 45.4$ (G = 0.00115965219: anomalous gyromagnetic ratio)
- Assume a circular RCS, made up of identical periods
- Superperiodicity P = 48 and a tune of $\nu = 48.2$ results in depolarizing resonances at $G\gamma = k \cdot P \pm l \cdot \nu$
- Resonance condition fulfilled at $G\gamma = 2 \cdot P \nu = 47.8$ - outside the energy range

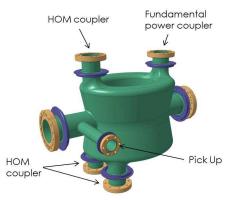

- High superperiodicity requires a circular ring, unlike the RHIC tunnel with its six straights
- However, if transfer matrices of straights are unit matrices

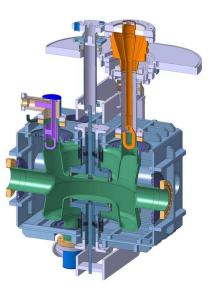
$$M_{\text{straight}} = I,$$


energy range remains resonance free

Polarization in RCS with orbit errors

- Spin tracking confirms validity of RCS concept
- 4000 turns used in simulation
- Faster ramping in only 400 turns technically feasible, further improving polarization preservation

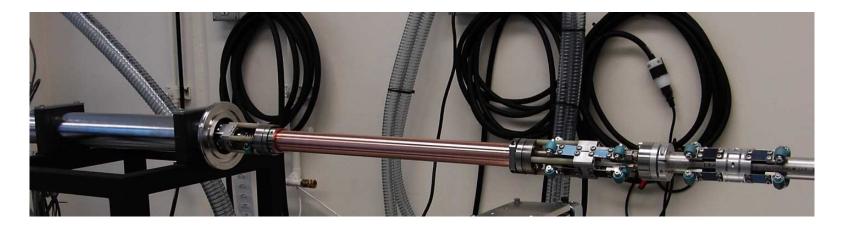

Short, sharp bends to increase damping decrement at low energies, thus allowing high electron beam-beam parameter $\xi = 0.1$


Studies and R&D Items

- Beam-beam simulations
- Electron polarization studies
- Multi-turn off-energy injection to eliminate need for accumulator ring
- Crab cavities
- In-situ beampipe copper coating

Crab Cavity Development

- IR design is based on a 22 mrad crossing angle; separator dipole would severely restrict Physics capabilities
- Need crab cavities to restore luminosity, and avoid synchro-betatron resonances
- Prototypes being developed in collaboration with CERN, needed for LHC luminosity upgrade


Critical R&D effort

In-situ Beampipe Copper Coating

• Resistive wall losses in stainless steel beampipes due to increased number of bunches in ring-ring design and short bunch length in ultimate linac-ring design exceed allowable cryo load

• Need copper coating to increase conductivity

• In-situ beam pipe coating of an entire machine has never been done, but successful coating of 20 m combination of cold-bore RHIC tubing & bellows having room temperature conductivity 85% of solid copper was achieved.

50 cm long cathode magnetron being inserted into a RHIC-type beam pipe

Luminosity Upgrade

- Upgrade requires increased number of bunches 1320 instead of initial 330 and hadron cooling
- Alternatively, if recirculating linac is chosen as full-energy injector, ring-ring scheme can be converted to linac-ring by operating full-energy injector in ERL mode. Requires strong hadron cooling as well, but only 110 bunches
- Intermediate luminosity upgrade can be achieved at all but the highest electron energies by doubling the initial number of bunches, to 660
- Proof-of-principle of very strong Coherent electron Cooling (CeC) in progress at RHIC

Summary

- eRHIC design covers the entire EIC White Paper physics case, with $10^{32} 10^{33} \,\mathrm{cm}^{-2} \mathrm{sec}^{-1}$ luminosities
- Need to carry out critical R&D on crab cavities, in-situ beam pipe coating, and cooling
- Cost effective upgrade to $10^{34} \,\mathrm{cm}^{-2}\mathrm{sec}^{-1}$ possible, using strong hadron cooling
- Crucial R&D underway to mitigate risk of strong hadron cooling (CeC Proof-of-Principle)