Results of performance test and error estimation in AMTF

† This work was done by many advices from W.-D. Möller and D. Reschke

Yasuchika Yamamoto (DESY/KEK)

- ♦ The seminar is done in 20/Jan/2015
- ♥ The slides are updated in 5/Feb/2015

Abstract

Performance tests for cavities and modules are on-going in AMTF for XFEL. In this seminar, the recent results are presented including the error estimation. Moreover, some topics, Q_{ext} shifting in V.T., performance degradation in module test, and so on, are discussed.

Outline

- Introduction
- Measurement system/method in V.T.
- \mathbf{A}_{ext} shift in V.T.
- Error estimation in V.T.
- Error estimation in module test
- Performance degradation
- *Summary

Introduction

How much is systematic error in performance tests at AMTF?

How about validity in performance tests?

How many cavities had the degradation in CM test?

They are also hot issues for the ILC!

Measurement system in V.T.

- ✓ Fixed coupler is used (typically, over-coupled)
- \checkmark Four cavities per stand
- Complicated switching circuit is used
- ✓ Radiation measurement at the both ends

$$P_{for} = P_0 + P_{ref} + P_{tra} + P_{HOM\#1} + P_{HOM\#2}$$

Measurement method in V.T.

- First measurement (calibration) point (at lowest gradient)
 - > P₀ is estimated from power balance in steady state (always)
 - $\succ \tau$ (decay time) is measured from RF switch off
 - > Then, every parameter is derived

- After second measurement points
 - $> Q_{tra}$ should be constant for every measurement point (assumption)
 - > Then, every parameter is derived (τ is not necessary)

Formulas for cavity testing

$$\begin{split} P_{for} &= P_{0} + P_{tra} + P_{ref} + P_{HOM \#1} + P_{HOM \#2} \\ \frac{P_{ref}}{P_{for}} &= \Gamma^{2} \\ \beta &= \frac{1 \pm |\Gamma|}{1 \mp |\Gamma|}, \beta_{tra} = \frac{Q_{0}}{Q_{tra}} = \frac{P_{tra}}{P_{0}}, \beta_{HOM \#1,2} = \frac{Q_{0}}{Q_{HOM \#1,2}} = \frac{P_{HOM \#1,2}}{P_{0}} \\ Q_{L} &= \omega_{\tau} \\ Q_{0} &= (1 + \beta)(1 + \beta_{tra} + \beta_{HOM \#1} + \beta_{HOM \#2})Q_{L} \\ Q &= \frac{\omega U}{P} \implies PQ = const. \\ Q_{tra} &= \frac{P_{0}Q_{0}}{P_{tra}}, Q_{HOM \#1,2} = \frac{P_{0}Q_{0}}{P_{HOM \#1,2}} \end{split}$$

LabVIEW program in V.T.

- ✓ β is calculated in four ways
 ✓ β from power meter is stored
- ✓ Then, Q_{ext} is calculated

Used Data for this analysis

>ttfvert1.desy.de (server)

/home/ttf/ttfcavity.db/cavity.CAV00*/test.*/

>/data/[date]qe*.txt (raw data)

>expCAV00*+01lg.txt (experiment log file)

Files.txt (brief report, limiting cause, radiation, etc.)

> pwr_corr.cfg (cable calibration)

>RF_state.txt (time stamp for RF switch ON/Off)

	А	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W
1	Cavity	Time	Eacc	Q0	Q load	Q ext	Q trans	Q homtop	Q hombot	P trans	P ref	P inc	P diss	P homtop	P hombot	beta	Rep Rate	Duty cyc.	fO	Temp	Tau	CP Volt	X-Ray
2	CAV00177	06/10/14;	2.41E+06	2.62E+10	6.16E+09	8.36E+09	2.39E+11	9.87E+12	2.54E+12	2.53E-02	7.42E-02	3.33E-01	2.31E-01	6.12E-04	2.38E-03	2.787012	1.00E+00	50	1.30E+09	1.99E+00	7.54E-01	0.00E+00	C
3	CAV00177	06/10/14;	4.38E+06	2.81E+10	6.25E+09	8.36E+09	2.39E+11	1.02E+13	2.54E+12	8.35E-02	2.63E-01	1.06E+00	7.09E-01	1.96E-03	7.85E-03	2.97358	1.00E+00	50	1.30E+09	1.99E+00	7.33E-01	0.00E+00	C
4	CAV00177	06/10/14;	7.77E+06	2.79E+10	6.25E+09	8.37E+09	2.39E+11	1.03E+13	2.54E+12	2.63E-01	8.19E-01	3.37E+00	2.25E+00	6.12E-03	2.47E-02	2.948525	1.00E+00	50	1.30E+09	1.99E+00	7.71E-01	0.00E+00	C
5	CAV00177	06/10/14;	1.08E+07	2.59E+10	6.15E+09	8.38E+09	2.39E+11	1.03E+13	2.54E+12	5.05E-01	1.46E+00	6.67E+00	4.64E+00	1.17E-02	4.73E-02	2.760792	1.00E+00	50	1.30E+09	1.99E+00	7.75E-01	0.00E+00	C
6	CAV00177	06/10/14;	1.33E+07	2.40E+10	6.02E+09	8.36E+09	2.39E+11	1.03E+13	2.54E+12	7.67E-01	2.05E+00	1.05E+01	7.63E+00	1.78E-02	7.20E-02	2.577763	1.00E+00	50	1.30E+09	1.99E+00	7.46E-01	0.00E+00	C
7	CAV00177	06/10/14;	1.62E+07	2.18E+10	5.87E+09	8.35E+09	2.39E+11	1.03E+13	2.54E+12	1.15E+00	2.75E+00	1.66E+01	1.25E+01	2.67E-02	1.08E-01	2.372858	1.00E+00	50	1.30E+09	1.99E+00	7.06E-01	0.00E+00	C
8	CAV00177	06/10/14;	1.93E+07	2.00E+10	5.69E+09	8.26E+09	2.39E+11	1.04E+13	2.54E+12	1.62E+00	3.53E+00	2.47E+01	1.94E+01	3.72E-02	1.53E-01	2.214597	1.00E+00	50	1.30E+09	1.99E+00	6.75E-01	0.00E+00	C
9	CAV00177	06/10/14;	2.25E+07	1.90E+10	5.53E+09	8.09E+09	2.39E+11	1.04E+13	2.54E+12	2.21E+00	4.69E+00	3.49E+01	2.77E+01	5.05E-02	2.08E-01	2.158184	1.00E+00	50	1.30E+09	1.99E+00	6.56E-01	0.00E+00	C
10	CAV00177	06/10/14;	2.51E+07	1.81E+10	5.37E+09	7.91E+09	2.39E+11	1.04E+13	2.54E+12	2.75E+00	5.74E+00	4.50E+01	3.62E+01	6.31E-02	2.58E-01	2.110832	1.00E+00	50	1.30E+09	1.99E+00	6.46E-01	0.00E+00	C
11	CAV00177	06/10/14;	2.81E+07	1.73E+10	5.18E+09	7.67E+09	2.39E+11	1.03E+13	2.53E+12	3.43E+00	7.21E+00	5.85E+01	4.74E+01	7.93E-02	3.24E-01	2.082749	1.00E+00	50	1.30E+09	1.99E+00	6.42E-01	0.00E+00	C
12	CAV00177	06/10/14;	3.11E+07	1.63E+10	5.00E+09	7.46E+09	2.39E+11	1.03E+13	2.52E+12	4.21E+00	8.66E+00	7.50E+01	6.16E+01	9.78E-02	3.98E-01	2.029428	1.00E+00	50	1.30E+09	1.99E+00	6.49E-01	0.00E+00	C
13	CAV00177	06/10/14;	3.43E+07	1.52E+10	4.64E+09	6.89E+09	2.39E+11	1.02E+13	2.50E+12	5.12E+00	1.17E+01	9.78E+01	8.04E+01	1.20E-01	4.88E-01	2.058202	1.00E+00	50	1.30E+09	1.99E+00	6.44E-01	0.00E+00	C
14	CAV00177	06/10/14;	3.76E+07	1.40E+10	4.37E+09	6.55E+09	2.39E+11	1.02E+13	2.51E+12	6.16E+00	1.42E+01	1.26E+02	1.05E+02	1.44E-01	5.87E-01	2.012908	1.00E+00	50	1.30E+09	1.99E+00	6.37E-01	0.00E+00	C
15	CAV00177	06/10/14;	4.09E+07	1.27E+10	4.09E+09	6.21E+09	2.39E+11	1.02E+13	2.50E+12	7.29E+00	1.62E+01	1.62E+02	1.37E+02	1.70E-01	6.97E-01	1.925663	1.00E+00	50	1.30E+09	1.99E+00	6.32E-01	0.00E+00	C
16	CAV00177	06/10/14;	4.40E+07	1.13E+10	3.77E+09	5.83E+09	2.39E+11	1.03E+13	2.51E+12	8.46E+00	1.79E+01	2.07E+02	1.79E+02	1.96E-01	8.05E-01	1.832825	1.00E+00	50	1.30E+09	1.99E+00	6.18E-01	0.00E+00	0.001

Analysis tools for this work

► PAW (CERN library)

≻very useful tool for complicated analysis

Shell (Linux) Text data production used in PAW (original files should be modified)

(ERN)	CERN Program Library Long Writeup Q121
	PAW
	Physics Analysis Workstation
	The Complete Reference
	Version 1.14 (July 1992)
	Application Software Group
	Computing and Networks Division
	CERN Geneva, Switzerland

Typical example in V.T. result Comparison of Q_0 vs. E_{acc} Curve for CAV00049/Test-01 in XFEL 1.0E + 11**♦**1st power rise (**Q0**) **O**2nd power rise (**Q**0) □ 3rd power rise (Q0) **△**1st power rise (Qext) **X** 2nd power rise (Qext) **O**3rd power rise (Qext)

If no trouble, the power rise is done a few times as a consistency check. The constant Q_{ext} means the valid measurement.

Items for error estimation

- Cable calibration parameters
 - The distribution should be estimated

- Q_{ext} distribution for each V.T.
 - Typically, when a cavity is in the transient state or
 β approaches one, something happens

Error estimation in cable calibration

Error estimation in cable calibration

After that, every data is accumulated as histogram. XATC1 has 141 events, and XATC2 has 120 events.

[dB]

The max. RMS is 0.1 dB, this means systematic error of $\pm 2.5\%$ in power measurement.

20/Jan/2015

18

Error estimation in Q_{ext} distribution

Examples of Good / No Good Q_{ext}

Good example (CAV00049, Test-01)

No good example (CAV00108, Test-01)

Almost all V.T.s have constant Q_{ext} . But, sometimes, it has No good measurement. Then, we can evaluate the validity for Q_{ext} .

Examples of Good / No Good Q_{ext}

Good example (CAV00049, Test-01)

No good example (CAV00108, Test-01)

About No Good Qext

• Q_{ext} shift at $\beta \sim 1 (Q_{ext} \sim Q_0) \rightarrow Pattern 1$

• Q_{ext} shift by sudden β jump \rightarrow Pattern 2

Q_{ext} distribution in CAV00019/Test01

Error = RMS / Mean * 100 = %

Q_{ext} distribution in CAV00109/Test02

No reason is written down in the experiment log. Why did Q_{ext} jump at only last point in the first power rise?

Qext distribution in CAV00670/Test01

Pattern 2

Cavity#670, Test#1, Error=39.1543%

There is no reason for this phenomenon in the experiment log!

Examples of Good / No Good Q_{ext}

No Good example (CAV00670, Test-01)

Examples of Good / No Good Q_{ext}

No Good example (CAV00717, Test-02/-03)

Cavity#717, Test#2

Cavity#717, Test#3

Qext distribution in CAV00539/Test01

The Q_{ext} gradually shifts around higher gradient. \rightarrow Pattern 1

Error distribution of Q_{ext}

Error distribution of Q_{ext} in AMTF/XATC

total # of tests; 804 (till 16/Jan/2015)

Calculation of error estimation for Power, E_{acc} measurement

Error estimation in V.T. ±2.5% • σ_{cable calibration};

Error propagation formula

$$\sigma_{total} = \sqrt{\sigma_{cable}^2 + \sigma_{Qext}^2}$$

= 6.6% (in power measurement)

O_{Qext},

Translation into error for E_{acc}

 $E_{acc} = 31.0 \sqrt{P_{tra}Q_{tra}}$

$(1 \pm x)^{1/2} \sim 1 \pm x/2 \ (x << 1)$ 0.066

Short Summary

✓ Error in power measurement for V.T.; 6.6%

✓ Error in field measurement for V.T.; 3.3%

✓ Largest error in Q_{ext}; 53% ✓ 95% of every test is within error of 20%

V.T. to CM test

Not exchanged ports after last V.T.

After last V.T., pick-up and two HOM ports are never exchanged \downarrow This means the Q values for these ports are still conserved in CM!

Translation from Q_{tra} into K_t

In STF, we usually evaluate the change of Q_{tra} between V.T. and C.T. But, in DESY, you use K_t for the evaluation.

TESLA Cavity Formula

$$E_{acc} = \frac{1}{L_{eff}} \sqrt{(R/Q)P_{tra}Q_{tra}} = 31.0\sqrt{P_{tra}Q_{tra}} = K_t \sqrt{P_{tra}}$$
$$(L_{eff} = 1.035m, R/Q = 1030\Omega)$$
$$\therefore K_t = 31.0\sqrt{Q_{tra}}$$
Measurement system in CM test

✓ Input coupler changed (port also) $\checkmark \beta \sim 1 \rightarrow \beta \sim 5000$ ✓ Input power increased \checkmark P_{for}~200W \rightarrow P_{for}~300kW \checkmark measurement method ✓ long pulse (10sec) → short pulse (1.4msec)

Measurement method in CM test

➤ Cable calibration

Every cable loss is measured by Network Analyzer or TDR

- > Low power test using Network Analyzer (4P_{for}Q_L=P_{tra}Q_{tra})
 - Every Q value (Q_L , Q_{tra} , $Q_{HOM#1}$, $Q_{HOM#2}$) is evaluated
- High power test using Klystron
 - $> Q_L$ is evaluated again at the pulse end

38

20/Jan/201

Accelerator Seminar

Formulas for module testing $Q_L = \omega \tau = 2\pi f \tau$

$$E_{acc} = \frac{1}{L_{eff}} \sqrt{(R/Q) \cdot 4P_{for}Q_L} \left(1 - e^{-\frac{t}{2\tau}}\right)$$

 $(L_{eff} = 1.035m, R/Q = 1030\Omega, t = 1.3m \text{ sec})$

$$K_{t} = \frac{E_{acc}}{\sqrt{P_{tra}}}, Q_{tra} = \left(\frac{K_{t}}{31.0}\right)^{2}$$

 $P_{tra}Q_{tra} = P_{HOM \# 1,2}Q_{HOM \# 1,2}$

Calibration data at AMTF

 $\checkmark \tau$ is measured around 5MV/m

$\checkmark E_{acc}$ is calculated using Q_L (t $\rightarrow \infty$)

$\checkmark K_t$ is estimated using E_{acc}

✓ Every Q value is derived

Used Data for this analysis

<u>http://amtfweb2/cavity/index.zul</u>

Special web site by Polish colleague (W. Mateusz)

igation			Progress	Cavities Coup	ers Calibration	Performance	e Reflec	ction Tune	Spectra	Vacuum	Сгуо				
n			✓ forExport												
	Module XM24	Tests	Cavity	Run	KT Pfor	EaccXStart Ea	acc10^2	EaccMax	EaccMaxL	OperGrad	OperGradL	XrayMaxG	XrayMaxD	Comments	
ical	Position	0 1			10^7] [KW]	[MV/m] [N	1V/m]	[MV/m]		[MV/m]		[mGy/min]	[mGy/min]		
paration	XM23			> FlatTop											
ities TE Status	Position	01												processing done with 75	i0+10
	XM22	0 1		1 1	.51 112.0 2	20.05 0.0)	20.85	BD	20.35	BD	2.0E-5	0.0	for short pulse 23 MV/m	ench
ules	Position														
								ui			J/ J 1 1		\	015	
		(2	XM8,	15,]	6 a	nd 1	71	not	inc	cluc	led)			_
								1							•
-	XM16 Position	© 1	C2 CAVO	129							111				
	XM16 Position XM15	01	C2 CAV00	129 > FlatTop											
	XM16 Position XM15 Position	© 1	C2 CAVO	129 × FlatTop	.56 246.0 2	23.7 31	.0	31.0	PWR	31.0	XRAY	0.01075	3.6E-5		
	XM16 Position XM15 Position XM14 Position	© 1 © 1 © 1	C2 CAV00	129 > FlatTop 2 1 <	.56 246.0 2	23.7 31	.0	31.0	PWR	31.0	XRAY	0.01075	3.6E-5		
	XM16 Position XM15 Position XM14 Position XM13	© 1 © 1 © 1	C2 CAVOC	129 × FlatTop	.56 246.0 2	23.7 31	.0	31.0	PWR	31.0	III XRAY III	0.01075	3.6E-5		
	XM16 Position XM15 Position XM14 Position XM13 Position	© 1 © 1 © 1 © 1	C2 CAVOC	129 > FlatTop 2 1 <	.56 246.0 2	23.7 31	.0	31.0	PWR	31.0	III XRAY III	0.01075	3.6E-5		
	XM16 Position XM15 Position XM14 Position XM13 Position XM12		C2 CAVOO	129 + FlatTop 2 1 + FlatTop 2 1 + FlatTop 1 1	.56 246.0 2 67 121.9 1	23.7 31	.0	31.0 21.0	PWR	31.0 20.36	III XRAY III XRAY	0.01075	3.6E-5 1.2E-4	Short pulse for processis min), BD on 22.3 MV/m	ng (4
	XM16 Position XM15 Position XM14 Position XM13 Position XM12 Position	© 1 © 1 © 1 © 1 © 1 0 1	C2 CAVO	129 +	.56 246.0 2 .67 121.9 1	23.7 31	.0 .36	31.0 21.0	PWR	31.0 20.36	III XRAY III XRAY	0.01075	3.6E-5 1.2E-4	Short pulse for processi min), BD on 22.3 MV/m	ng (4
	XM16 Position XM15 Position XM14 Position XM13 Position XM12 Position XM11	© 1 © 1 © 1 © 1 © 1 © 1 © 1	C2 CAVO	129 + FlatTop 2 1 4	56 246.0 2 67 121.9 1	^{13.7} 31 12.25 20	.0	31.0 21.0	PWR	31.0	III XRAY III XRAY III	0.01075	3.6E-5 1.2E-4	Short pulse for processis min), BD on 22.3 MV/m	ng (4
	XM16 ▷ Position XM15 ▷ Position XM14 ▷ Position XM13 ▷ Position XM12 ▷ Position XM12 ▷ Position XM11 ▷ Position		C2 CAVO	129 + FiatTop 2 1 + FiatTop 2 1 + FiatTop 1 1 + FiatTop 1 1 + FiatTop 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 2 1 2	.56 246.0 2 .67 121.9 1 .67 119.1 1	23.7 31 12.25 20 12.09 20	.0 .36 .5	31.0 21.0 21.0	PWR BD BD	31.0 20.36 20.5	III XRAY III XRAY	0.01075	3.6E-5	Short pulse for processi min), BD on 22.3 MV/m	ng (4
	XM16 Position XM15 Position XM14 Position XM13 Position XM12 Position XM11 Position XM10 Position	● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1	C2 CAVO	129 + FiatTop 2 1 + FiatTop 1 1 1 + FiatTop 120 2 1 + FiatTop 2 1 + FiatTop	.56 246.0 2 .67 121.9 1 .67 119.1 1	23.7 31 2.25 20 2.09 20	.0 .36 .5	31.0 21.0 21.0	PWR BD BD	31.0 20.36 20.5	III XRAY III XRAY III XRAY	0.01075	3.6E-5 1.2E-4 1.0E-4	Short pulse for processi min), BD on 22.3 MV/m	ng (4
	XM16 Position XM15 Position XM14 Position XM13 Position XM12 Position XM11 Position XM10 Position XM10 Position XM10 Position	Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1	C2 CAVO	129 > FlatTop 2 1 > FlatTop 1 1 > FlatTop 1 2 > FlatTop 1 1 > FlatTop 1 2 > FlatTop 1 4 > FlatTop - 1 4 > FlatTop - 2 4 - 4	.56 246.0 2 .67 121.9 1 .67 119.1 1	23.7 31 12.25 20 12.09 20	0 36 5	31.0 21.0 21.0	PWR BD BD	31.0 20.36 20.5	III XRAY III XRAY III XRAY III	0.01075	3.6E-5 1.2E-4 1.0E-4	Short pulse for processi min), BD on 22.3 MV/m	ng (4
	XM16 Position XM15 Position XM14 Position XM13 Position XM12 Position XM11 Position XM11 Position XM10 Position XM10 Position	Image: 1 Image: 1	C2 CAVO	129 > FlatTop 2 1 > FlatTop 1 1 > FlatTop 1 2 > FlatTop 2 1 > FlatTop 2 1 > FlatTop 1 1 > FlatTop 2 1 > FlatTop - 1 1 > FlatTop - 2 1 - 2 1	56 246.0 2 67 121.9 1 67 119.1 1	23.7 31 2.25 20 2.09 20	.0 .36 .5	31.0 21.0 21.0	PWR BD BD	31.0 20.36 20.5	III XRAY III XRAY III XRAY III	0.01075	3.6E-5 1.2E-4 1.0E-4	Short pulse for processi min), BD on 22.3 MV/m	ng (4
	XM16 ▶ Position XM15 ▶ Position XM14 ▶ Position XM13 ▶ Position XM12 ▶ Position XM11 ▶ Position XM10 ▶ Position XM9 ▶ Position XM8 ▶ Position	Image: 1	C2 CAVO	129 + FlatTop 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	56 246.0 2 67 121.9 1 .67 119.1 1	23.7 31 12.25 20 12.09 20 11.86 20	.0 .36 .5	21.0 21.0 20.76	PWR BD BD BD	31.0 20.36 20.5 20.21	III XRAY III XRAY III XRAY III BD	0.01075	3.6E-5 1.2E-4 1.0E-4 1.0E-4	Short pulse for processi min), BD on 22.3 MV/m	ng (·

Accelerator Seminar

Accelerator Seminar

Accelerator Seminar

20/Jan/2015

Accelerator Seminar

47

Accelerator Seminar

Distribution of ΔK_t

Distribution; mean = -1.5%r.m.s. = 5.6%Gaussian; mean = -1.8% $\sigma = 6.1\%$

Mean value is nearly $0. \rightarrow Good$ Gaussian-like distribution $\rightarrow Good$

Calibration of Q_t, Q_{HOM1}, Q_{HOM2}

	Cavity	Q t	Q _t (VT)	error	Q HOM1	Q HOM2
1.	C1/AES-004	6.01 x10 ¹¹	5.9 x10 ¹¹	+ 2%	6.08 x10 ¹¹	2.25 x10¹³
2.	C2/ACC-011	2.48 x10 ¹²	2.8 x10 ¹²	-13%	9.45 x10 ¹²	4.36 x10 ¹²
3.	C3/Z-108	2.43 x10 ¹¹	1.9 x10 ¹¹	+22%	9.23 x10 ¹¹	2.06 x10 ¹³
4.	C4/Z-109	3.53 x10 ¹¹	4.0 x10 ¹¹	-13%	4.93 x10 ¹²	7.22 x10 ¹⁵
5.	A1/MHI-05	2.39 x10 ¹¹	2.2 x10¹¹	+ 8%	1.90 x10 ¹³	3.99 x10 ¹³
6.	A2/MHI-06	2.83 x10 ¹¹	3.4 x10 ¹¹	-20 %	1.53 x10 ¹³	6.42 x10 ¹³
7.	A3/MHI-07	2.31 x10 ¹¹	2.6 x10 ¹¹	-13%	9.27 x10 ¹²	6.09 x10 ¹²
8.	A4/MHI-09	2.50 x10 ¹¹	1.8 x10 ¹¹	+28%	9.96 x10 ¹²	8.04 x10 ¹³

error of Q $_{t}$ = -20 / +28 %

 Q_{HOM1} , $Q_{HOM2} > 1 \times 10^{12}$, OK

E. KAKO (KEK) 2010' July 02

iiL

S1-G @ STF meeting Global Design Effort

Comparison between ΔE_{acc} and ΔK_t

Summary of error estimation

	Power	Field
	measurement	measurement
Only V.T.	6.6%	3.3%
V.T. \rightarrow C.T.	12.6%	6.1%
Summed error	14.2%	6.9%

[†] These errors show the average number (1σ) for each condition. 1 σ includes 68.3%, and 3 σ includes 99.7% for normal distribution.

Summary

- Data analysis for V.T./CM test is done with error estimation
- Error in power measurement in AMTF; 14.2%
- Error in field measurement in AMTF; 6.9%
- Largest error of Q_{ext} in V.T. is 53%
- 34 of 127 cavities degraded beyond K_t error

53

For more detailed analysis

- Cable calibration parameters in CM test
- Q_L check in low / high power tests in CM test

 → should be added in systematic error
 → Error region would be wider

• Δf_{LFD} v.s. E_{acc}^{2} as a consistency check

Summary of S1-Global

	A1 MHI#5	A2 MHI#6	A3 MHI#7	A4 MHI#9	C1 AES#4	C2 ACC#11	C3 ZANON #108	C4 ZANON #109
Gradient [MV/m]	28.0	34.2 (31.5)	31.7	23.3	27.2	22.0	18.0	29.2 (28.5)
$ extsf{f}_{ extsf{detuned}}$ (total) [Hz]	436	710	558	399	708	478	440	1003
$ \stackrel{ riangle}{ f_{detuned}}_{(rise-up)} $ [Hz]	353	527	427	219	372	248	195	451
$ \bigtriangleupf_{detuned} \ (only flat-top) \ [Hz] $	83	183	131	180	336	230	245	552
$\begin{array}{c} Q_L \\ \text{(High Power)} \\ [x10^6] \end{array}$	2.55	2.50	2.42	2.31	2.32	2.34	2.37	2.43
$\begin{array}{c} Q_L \\ \text{(Low Power)} \\ [x10^6] \end{array}$	2.41	2.41	2.40	2.41	2.40	2.40	2.41	2.40
Average 2(pulses)5	100	100	100 Acc	100 celerator Semi	100 nar	100	100	100 55

Comparison of LFD (full-pulse) in S1-Global

Accelerator Seminar

Thank you very much for your attention

Accelerator Seminar

Back-up slides

V.T. results with No GOOD Q_{ext}

Cavity #	Test #	Error of Q _{ext} [%]	Max. E _{acc} [MV/m]	Pattern				
$\Delta Q_{ext} > 50\% (1 \text{ event})$								
CAV00539	Test 01	51.6	34.9	1				
$\Delta Q_{ext} = 30 \sim 50\% \text{ (12 events)}$								
CAV00021	Test 01	30.4	34.4	2				
CAV00056	Test 02	30.2	38.3	2				
CAV00123	Test 03	35.9	37.5	2				
CAV00123	Test 04	36.1	34.6	2				
CAV00183	Test 01	48.9	29.9	2				
CAV00518	Test 02	34.2	23.4	1				
CAV00531	Test 01	36.3	31.8	1				
CAV00534	Test 01	37.3	30.3	1				
CAV00538	Test 01	43.3	3.3	1				
CAV00539	Test 02	34.0	33.0	2				
CAV00540	Test 01	31.0	34.8	1				
CAV00552	Test 01	37.9	25.1	1				
CAV00670	Test 01	39.2	35.3	2				
CAV00691	Test 01	45.5	30.7	2				

20/Jan/2015

V.T. results with No GOOD Q_{ext}

Cavity #	Test #	Error of Q _{ext} [%]	Max. E _{acc} [MV/m]	Pattern				
$\Delta Q_{ext} = 20 \sim 30\% \text{ (21 events)}$								
CAV00048	Test 01	24.5	37.3	1 & 2				
CAV00063	Test 01	27.7	37.6	2				
CAV00074	Test 01	25.3	36.3	1 & 2				
CAV00080	Test 01	23.9	15.1	1 & 2				
CAV00108	Test 02	24.3	6.1	1				
CAV00109	Test 02	29.6	35.0	2				
CAV00121	Test 02	29.4	37.6	1 & 2				
CAV00134	Test 01	24.7	8.9	1				
CAV00167	Test 01	21.2	29.7	1				
CAV00201	Test 01	21.9	1.5	1				
CAV00509	Test 02	23.5	8.8	1				
CAV00514	Test 01	24.2	33.1	1				
CAV00515	Test 02	25.0	27.3	2				
CAV00524	Test 01	25.5	29.3	1				
CAV00529	Test 01	28.8	32.3	1				
CAV00530	Test 01	20.6	32.1	1				

20/Jan/2015

V.T. results with No GOOD Q_{ext}

Cavity #	Test #	Error of Q _{ext} [%]	Max. E _{acc} [MV/m]	Pattern
CAV00533	Test 01	20.6	21.9	1 & 2
CAV00588	Test 01	20.4	19.4	1 & 2
CAV00644	Test 01	28.6	28.4	1
CAV00664	Test 01	25.6	5.6	1
CAV00755	Test 01	21.3	34.6	1 & 2

Accelerator Seminar

Distribution of ΔQ_{tra}

Distribution; mean = -2.4%r.m.s. = 11.4%Gaussian; mean = -3.4% $\sigma = 12.6\%$

Mean value is nearly $0. \rightarrow Good$ Gaussian-like distribution $\rightarrow Good$

Data analysis for radiation level with geometry check in CM

Radiation/Dark-current monitor in XATB ✓ Radiation monitor

- \checkmark Measured at the both ends of CM
- ✓ different distance from each end cavity
 - ✓ quadrupole/BPM system, different refrigerator part

- ✓ Dark current monitor
 - ✓Not available yet (calibration is necessary?)
 - ✓ If available, be able to estimate the max. energy from the energy spectrum, and translate into the max. gradient for each cavity

Radiation level at XATB/AMTF

Radiation level in Cryomodule test at XATB/AMTF

30

30

30

30

Max E

2

Max E_{acc} [MV/m]

Max E_{acc} [MV/m]

Max E_{acc} [MV/m]

40

40

40

40

__[MV/m]

Radiation level in Cryomodule test at XATB/AMTF

^{20/Jan/} Correlation between max. gradient and each radiation level for each cavity position

Radiation level in Cryomodule test at XATB/AMTF at XATB/AMTF

o; GUN side

□; DUMP side

There is a trend to be observed the higher radiation level for the GUN side

- Because, the distance is shorter for Cavity position 1
- Depends on input coupler position (?)

Result with "true" error bar

Comparison between ΔE_{acc} and ΔK_t

Some errors are already included in result for V.T.!
Error estimation formula

