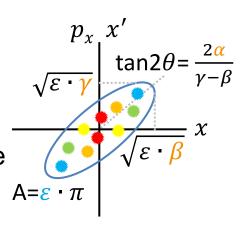
Incorporating space charge in the transverse phase space matching and tomography at PITZ.

Outline

- Basic concepts and motivation:
 - Transverse phase space
 - Space charge
 - PITZ facility
 - Phase Space Tomography (PST)
- > Beam matching with space charge: periodic and dense lattices
- > Beam matching with space charge: <u>aperiodic</u> and <u>sparse</u> lattices
- Space charge in the tomographic reconstruction
- Summary and outlook



Transverse phase space

- Crucial factor for the performance of various accelerator applications
 - Free-electron laser (FEL SASE): affects gain length, output power, minimum achievable wavelength, transverse coherence, brilliance
 - Plasma wakefield acceleration: affects beam quality, feasibility of staging
- > Goal: optimization and detailed characterization
- > Represents the dynamic state of a beam's particles in the transverse direction: (x, p_x, y, p_y) or (x, x', y, y')
- Characterized by emittance, Courant-Snyder parameters
- > Transformed with the particles' motion along the machine described by:
 - the transfer matrix (linear geometrical transformation)
 - the phase advance (particle relocation inside the bunch)

Space charge

- Coulomb repulsion among the particles of the beam
- Electromagnetic fields (only direct considered, no image fields) from a uniform cylindrical bunch:

$$^{\bullet}E_r\left(r,\zeta\right) = \frac{\textit{Ir}}{2\pi\epsilon_0 \textit{R}^2\beta_{rel}c} g\left(\zeta\right) : \begin{cases} \text{linear dependence on transverse position in the bunch} \\ \text{max at bunch center - min at head / tail} \end{cases}$$

•
$$F_r = q (E_r - \beta_{rel} c B_\theta) = ... = q E_r / \gamma_{rel}^2$$

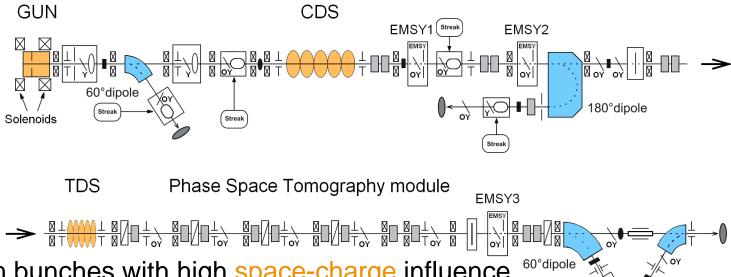
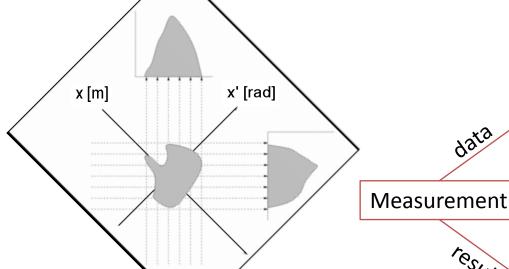
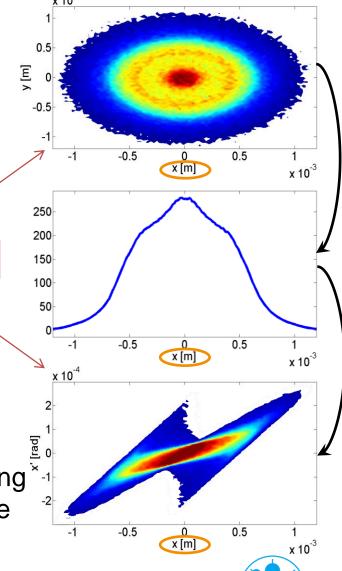

- Dependence on bunch current, <u>radius</u> and <u>energy</u>
- > Impacts: beam transport, quality and measurements
- > Motivation: time-efficient methods to compensate its effects

Photo Injector Test facility at DESY, Zeuthen site


- > Electron bunches with high space-charge influence
 - 2 24 ps laser pulses
 - 20 pC 1 nC bunch charge
 - < 25 MeV/c momentum</p>
- Diagnostics for the transverse phase space: 3 slit-scan stations (EMSYs) and 1 phase space tomography [PST] module
- > Various applications require transverse beam matching. Due to the constantly changing machine parameters, fast solutions are needed

Phase Space Tomography (PST)



> Principle of tomography: reconstruct a sample using its projections at different directions

Beam diagnostics: reconstruct the transverse phase space, using projections in the real space $\stackrel{>}{\rightarrow}$ common axis!

Reconstruct each projection with its corresponding transformation (→ transfer matrix) using an iterative algorithm (MENT)

data

Phase Space Tomography (features)

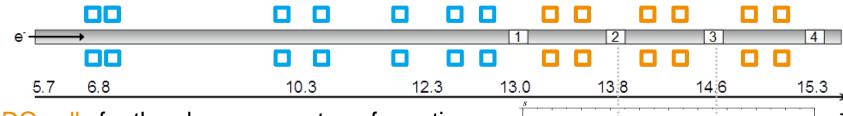
- Improved signal-to-noise ratio
 - (→ suitable for low charges, single bunch and slice measurements)
- + Simultaneous measurement of both transverse planes

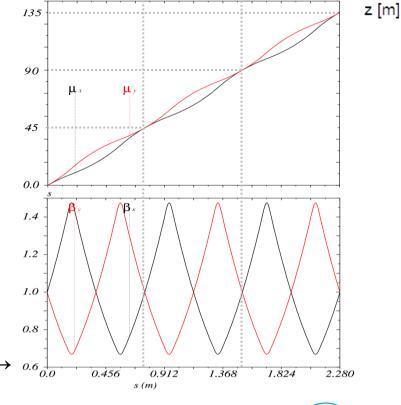
(→ less prone to short-term machine instabilities)

Quasi non-destructive measurement using fast kickers

(→ monitoring of long term machine stability)

Requires beam matching and space-charge treatment




Phase Space Tomography (PITZ)

Components:

- FODO cells for the phase-space transformation
 & projection screens for data acquisition
- 2. Matching lattice for the necessary beam parameters in front of FODO lattice
- Matching requirements:
 - equidistant phase advance values (45°)
 @ each PST screen (∝ rotation angles)
 - 2. Courant-Snyder parameters @ 1st screen \rightarrow $\beta_{x,v} = 1.0 \text{ m}, \ \alpha_{x,v} = \pm 1.1$

Beam matching with space charge: periodic and dense lattices

- Under the conditions of : ✓ periodic focusing ✓ (fairly) constant emittance

the smooth-approximation theory* can be used to correlate the beam dynamics without and with space charge (linear component)

- > The lattice is approximated by a uniform focusing channel which can be tuned to the matched beam solution: R(z) = constant, R'(z) = 0
- \gt The net focusing strength (including space charge, k) is expressed as a function of the external focusing force (k_0): $k = \sqrt{{k_0}^2 - \frac{K}{R^2}}$
- Enables codes with no space-charge consideration (MAD) to perform space-charge matching by a proper scaling of the beam parameters

^{*} Martin Reiser: Theory and Design of Charged Particle Beams, Wiley

Beam matching with space charge: periodic and dense lattices (procedure)

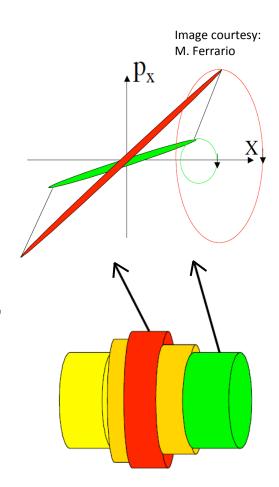
- 1. Requirements: space-charge density (emittance and generalized perveance)
- 2. The desired matching constrains (45°) are scaled accordingly (e.g. 55°)
- A traditional MAD matching is performed using the scaled parameters, providing the required focusing strength
- 4. Reverse-scaling of the MAD tracking results to obtain the corresponding beam parameters in the presence of space charge

Beam matching with space charge: periodic and dense lattices (simulation)

Matching result of nominal PITZ beam – evaluated with ASTRA (1 nC, 22 ps flat-top, 25 MeV/c, 1 mm·mrad)

	Phase-advance mismatch @ 2 nd screen 3 rd screen 4 th screen			
X plane				
Traditional MAD matching	-3.1°	-16.9°	-34.5°	
MAD with space charge consideration	-0.9°	-0.9°	-1.2°	
Y plane				
Traditional MAD matching	-4.7°	-20.2°	-37.8°	
MAD with space charge consideration	-1.9°	-4.5°	-3.6°	

- The phase-advance mismatch is reduced from 38° to 5° (depending on space-charge density)
 - Method yields almost instant results



Beam matching with space charge: aperiodic and sparse lattices

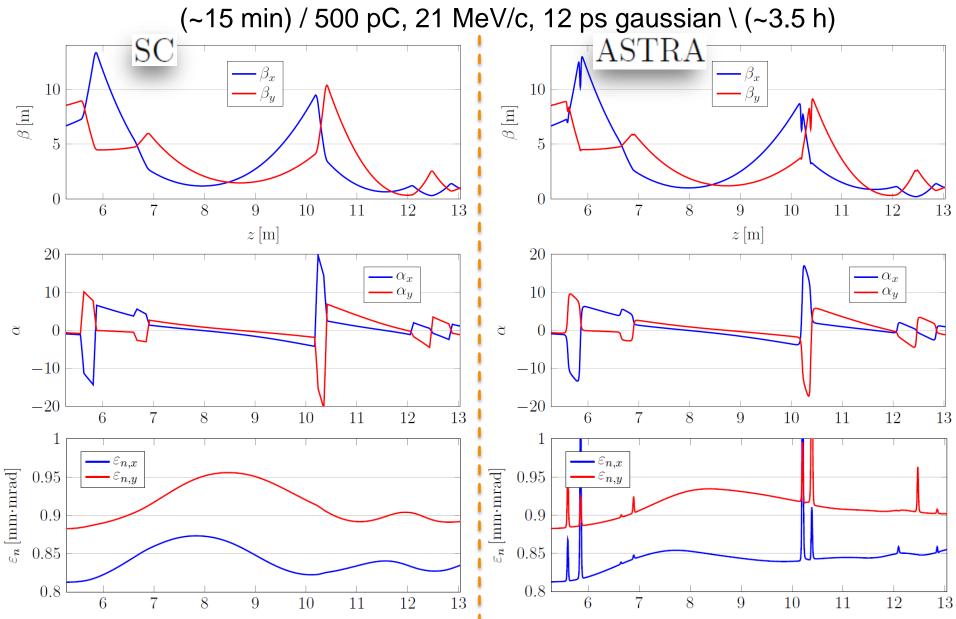
- > Matching section: neither periodic nor constant emittance along it
- > Except from defocusing, space charge also induces correlated emittance growth
- > Different longitudinal slices obtain different transverse parameters, overlapping in the phase space
- > In order to match the target values all along the bunch, the slices have to be aligned
- The matching procedure needs to additionally perform emittance compensation using quadrupoles

Beam matching with space charge: aperiodic and sparse lattices (SC code)

- Solution: SC software (HZB A. Matveenko)
- > Tracking functionality: includes linear space-charge forces for each slice → correlated emittance growth considered + immediate result

Matching functionality: iterative tracking with varying quadrupole strengths in search for a goal projected emittance

- Adjusted to the needs of PITZ:
 - β- and α-parameters as additional matching constraints
 - on-line feature for measurements:
 slice rms moments as input (apart from an ASTRA distribution)


UH <u>#</u>

Beam matching with space charge: aperiodic and sparse lattices (simulation)

z [m]

 $z \, [\mathrm{m}]$

 ε_{v} [mm·mrad]

Beam matching with space charge: aperiodic and sparse lattices (measurement)

	+1.8 m (4 quads): slit-scan		+7.8 m (9 quads): tomography			
	SC	ASTRA	Measured	SC	ASTRA	Measured
β_x [m]	2.08	1.99	2.83 ± 0.11	0.91	1.01	0.78 ± 0.02
α_{x}	1.09	1.16	1.42 ± 0.10	1.13	0.96	0.70 ± 0.02
ε_{x} [mm·mrad]	0.86	0.85	0.94 ± 0.04	0.83	0.85	1.96 ± 0.03
β _y [m]	4.83	4.80	5.51 ± 0.37	1.03	1.10	1.07 ± 0.01
α_{y}	2.29	2.39	3.13 ± 0.14	-1.12	-1.15	-1.09 ± 0.02

Acceptable agreement between simulated and measured Courant-Snyder parameters (mismatch of several hundreds % when space charge is neglected)

 1.25 ± 0.07

0.89

0.90

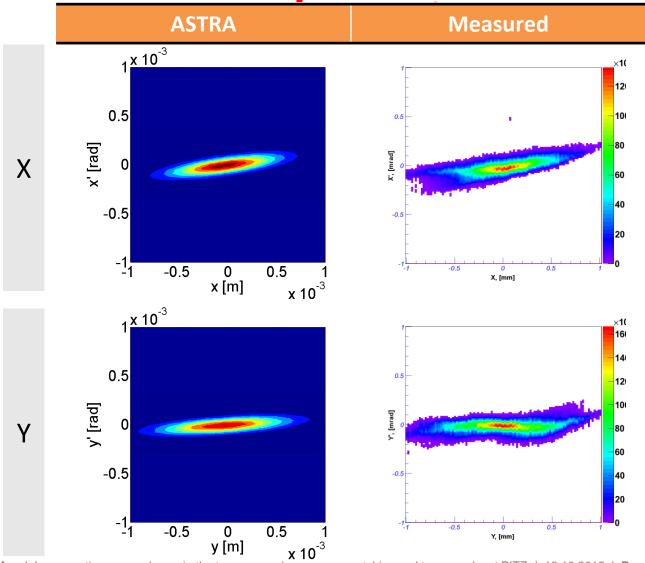
> Increased emittance due to measurement imperfections?

0.92

1. machine and operational imperfections (RF, laser, trajectory, ...)

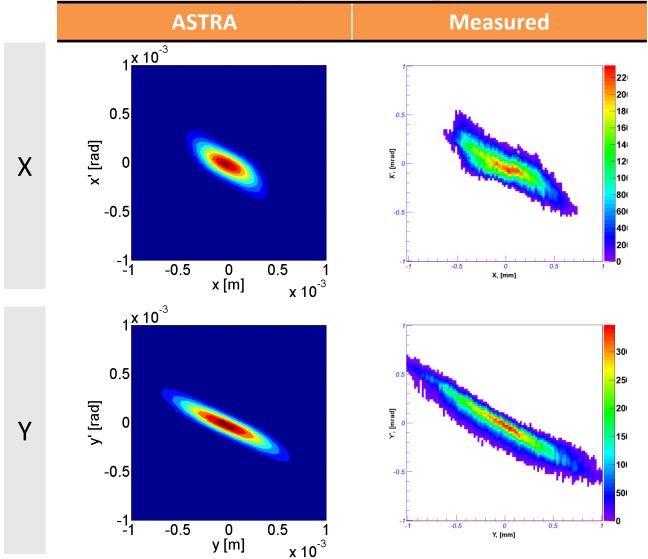
0.91

- 2. used model: input distribution, non-linear fields, transverse coupling
- 3. <u>beam halo</u>: grows downstream + is better resolved at PST than at EMSYs


1.44 ± 0.02

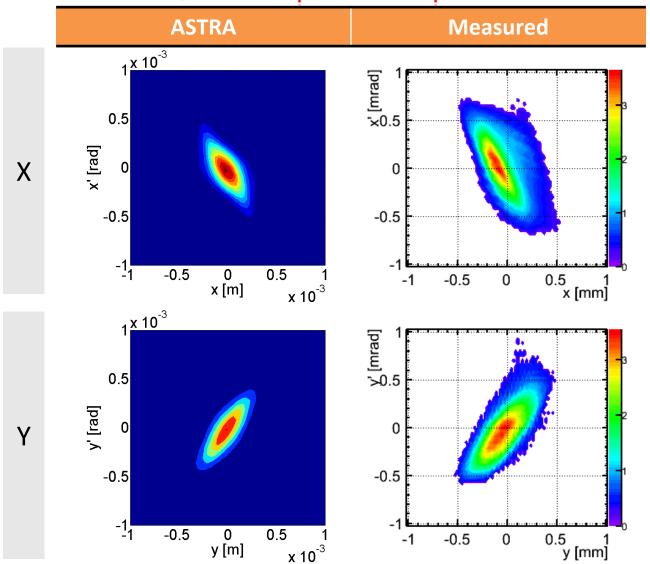
Beam matching with space charge: aperiodic and sparse lattices (measurement)

Beginning of matching [slit scan]:



Beam matching with space charge: aperiodic and sparse lattices (measurement)

1.8 m downstream [slit scan]:

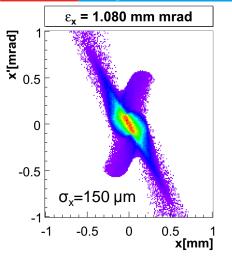


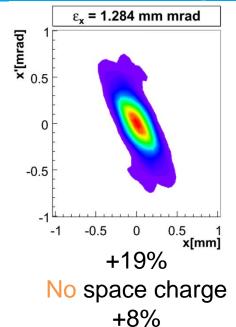
Beam matching with space charge: aperiodic and sparse lattices (measurement)

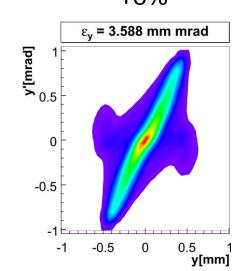
7.8 m downstream [tomography]: →□□

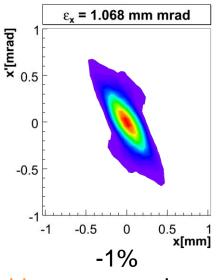
Space charge in the tomographic reconstruction

- The reconstruction of the captured projections requires an accurate description of the phase-space transformations
- Defocusing of space charge has to be included in the transfer matrices
- Perform a linear space-charge tracking (SC) along the FODO lattice, using an estimation for the entering beam parameters
- Calculate corresponding transfer matrices from the simulation result (Courant-Snyder parameters at the projection screens) using:

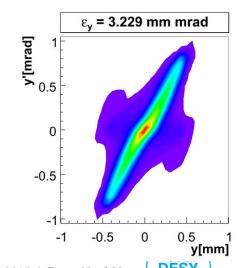

$$M_{q} = \begin{pmatrix} \sqrt{\frac{\beta_{qf}}{\beta_{qi}}} \left(\cos\phi_{q} + \alpha_{qi} \sin\phi_{q} \right) & \sqrt{\beta_{qf}\beta_{qi}} \sin\phi_{q} \\ -\frac{1 + \alpha_{qf}\alpha_{qi}}{\sqrt{\beta_{qf}\beta_{qi}}} \sin\phi_{q} + \frac{\alpha_{qi} - \alpha_{qf}}{\sqrt{\beta_{qf}\beta_{qi}}} \cos\phi_{q} & \sqrt{\frac{\beta_{qi}}{\beta_{qf}}} \left(\cos\phi_{q} - \alpha_{qf} \sin\phi_{q} \right) \end{pmatrix}$$


Space charge in the tomographic reconstruction (ASTRA simulation: 1 nC, 22 ps flat-top, 25 MeV/c)

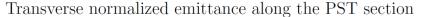


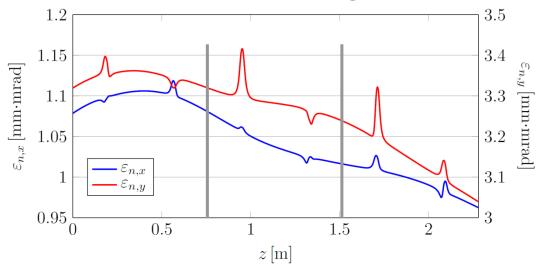


Original distribution



Linear space charge -3%



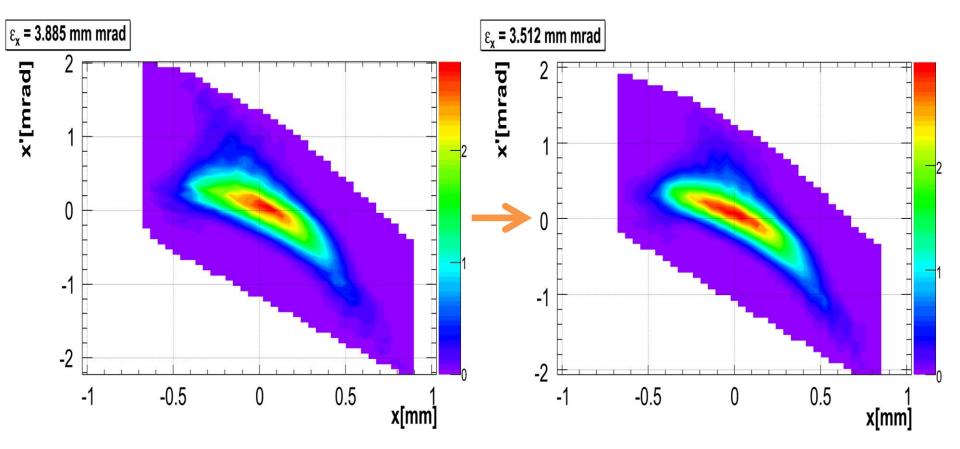


Space charge in the tomographic reconstruction (ASTRA simulation: 1 nC, 22 ps flat-top, 25 MeV/c)

With respect to the mean of the projected emittance...

	X-plane	Y-plane
No space charge reconstruction	+24%	+11%
Linear space charge reconstruction	+3%	0%

~ 20% error reduction with the linear space-charge correction

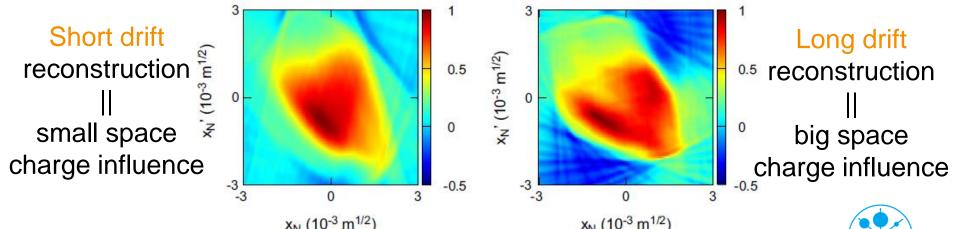


Space charge in the tomographic reconstruction (measurement: 1 nC, 22 ps flat-top, 25 MeV/c)

Without space charge

With space charge

Reduction in the calculated emittance = 11% (transverse rms size ~ 0.25 mm)


Space charge in the tomographic reconstruction (and beyond...)

- Method can be applied to various measurement techniques and beam parameters [current, dimensions, energy]
- Multiscreen measurement at bunch compressor exits of FELs: comparable results expected (similar space-charge forces)
 - XFEL: 20 pC @ BC 2 [4 kA, 20 µm, 2.4 GeV]
 - FLASH: 20 pC @ BC 3 [1.5 kA, 65 μm, 450 MeV]

from desy.de/fel-beam

Quad-scan tomography at ALICE (Cockroft Institute) [80 pC, 12 ps, 12 MeV]: space-charge treatment explained measurement discrepancies

Summary and outlook

- The major effect of space charge is included in the transverse matching and the phase space tomography at PITZ:
- 1. Two matching strategies for different types of lattices:
 - instant solution for <u>periodic lattices</u> (→ MAD + smooth approximation)
 - quick solution for <u>irregular lattices</u> (→ SC)
 - Both solutions yield good results in the most time-efficient way
- 2. The tomographic reconstruction is corrected by ~ 20%
- > Results applicable to FELs in matching and multiscreen measurements at high energies and compressed dimensions (bunch compressor exits)
- Outlook: evaluate the effect of halo in the matching efficiency of SC, test alternative matching tools (e.g. Xtrack, DESY, M. Dohlus)
- Commission fast kickers for quasi non-destructive emittance measurements, extend analysis to 4D transverse phase space

Thanks to:

PITZ group: every single member and especially Mikhail Krasilnikov,

Grygorii Vashchenko, Frank Stephan

<u>DESY Hamburg</u>: Winfried Decking, Martin Dohlus, Torsten Limberg,

Barbara Marchetti, Jörg Rossbach

Cockcroft Institute: Kai M. Hock

Helmholtz-Berlin: Alexey Bondarenko, Andreas Ginter, Dmitriy Malyutin,

Aleksandr Matveenko

niversität Hamburg

DER FORSCHUNG I DER LEHRE I DER BILDUNG