Optics measurement algorithms for the proton energy frontier

Andy Langner

European Organization for Nuclear Research (CERN) \& Universitaet Hamburg Joint DESY and University of Hamburg Accelerator Physics Seminar, 18.11.2014

Outline

- Motivation
- β-function from BPM turn-by-turn data
- Improvements
- Error analysis
- Model accuracy
- Hardware/Software

Motivation

Motivation

- Tight tolerances for β-beat due to
- Available mechanical aperture

"For the LHC the total tolerance for the β-beat has been specified as 20 \%."
 -LHC Design Report I

- In 2012 a β-beat of up to 100% was observed before local corrections

Motivation

- Run II at $6.5 \mathrm{TeV} \longrightarrow>$ allows for smaller beta*
- —> enhances optics errors of triplet magnets
- More quadrupole magnets in saturation regime
- Broken MQT magnet (tune trim)

Motivation

- Extrapolating to 40cm beta* at 6.5 TeV

Motivation

- Higher damage potential at 6.5 TeV
- Limits maximum excitation amplitude and total beam charge
- Reduced signal to noise ratio for optics measurement

Motivation

- In 2012 insufficient resolution to measure:
- IP beta-functions
- Beta-functions during the ramp for emittance studies

Measurement method

Optics measurement

Optics measurement

- Measurement of BPM turn-by-turn data x_{i}

Optics measurement

- Measurement of BPM turn-by-turn data x_{i}
- Harmonic analysis $C(w)=\sum_{i=0}^{N-1} x_{i} \cos (w i), S(w)=\sum_{i=0}^{N-1} x_{i} \sin (w i)$

Optics measurement

- Measurement of BPM turn-by-turn data x_{i}
- Harmonic analysis $C(w)=\sum_{i=0}^{N-1} x_{i} \cos (w i), S(w)=\sum_{i=0}^{N-1} x_{i} \sin (w i)$
- Phase advance of betatron oscillation between BPM

$$
\phi(w)=-\arctan \left(\frac{S(w)}{C(w)}\right)
$$

Optics measurement

- Measurement of BPM turn-by-turn data x_{i}
- Harmonic analysis $C(w)=\sum_{i=0}^{N-1} x_{i} \cos (w i), S(w)=\sum_{i=0}^{N-1} x_{i} \sin (w i)$
- Phase advance of betatron oscillation between BPM

$$
\phi(w)=-\arctan \left(\frac{S(w)}{C(w)}\right)
$$

Optics measurement

- Measurement of BPM turn-by-turn data x_{i}
- Harmonic analysis $C(w)=\sum_{i=0}^{N-1} x_{i} \cos (w i), S(w)=\sum_{i=0}^{N-1} x_{i} \sin (w i)$
- Phase advance of betatron oscillation between BPM

$$
\phi(w)=-\arctan \left(\frac{S(w)}{C(w)}\right)
$$

$$
\beta_{i}=\frac{\epsilon_{i j k} \cot \left(\phi_{i, j}\right)+\epsilon_{i k j} \cot \left(\phi_{i, k}\right)}{\epsilon_{i j k} \frac{M_{11(i, j)}}{M_{12(i, j)}}+\epsilon_{i k j} \frac{M_{11(i, k)}}{M_{12(i, k)}}}
$$

Optics measurement

$$
\beta_{i}=\frac{\epsilon_{i j k} \cot \left(\phi_{i, j}\right)+\epsilon_{i k j} \cot \left(\phi_{i, k}\right)}{\epsilon_{i j k} \frac{M_{11(i, j)}}{M_{12(i, j)}}+\epsilon_{i k j} \frac{M_{11(i, k)}}{M_{12(i, k)}}}
$$

Optics measurement

- Optimum phase advances

$$
\beta_{i}=\frac{\epsilon_{i j k} \cot \left(\phi_{i, j}\right)+\epsilon_{i k j} \cot \left(\phi_{i, k}\right)}{\epsilon_{i j k} \frac{M_{11(i, j)}}{M_{12(i, j)}}+\epsilon_{i k j} \frac{M_{11(i, k)}}{M_{12(i, k)}}}
$$

$$
\begin{aligned}
\phi_{i, j} & =\frac{\pi}{4}+n_{1} \frac{\pi}{2} \\
\phi_{i, k} & =\frac{\pi}{4}+\left(2 n_{2}+1-n_{1}\right) \frac{\pi}{2}
\end{aligned} \quad n_{1}, n_{2} \in \mathbb{Z}
$$

Optics measurement

- Optimum phase advances

$$
\beta_{i}=\frac{\epsilon_{i j k} \cot \left(\phi_{i, j}\right)+\epsilon_{i k j} \cot \left(\phi_{i, k}\right)}{\epsilon_{i j k} \frac{M_{11(i, j)}}{M_{12(i, j)}}+\epsilon_{i k j} \frac{M_{11(i, k)}}{M_{12(i, k)}}}
$$

$$
\begin{aligned}
\phi_{i, j} & =\frac{\pi}{4}+n_{1} \frac{\pi}{2} \\
\phi_{i, k} & =\frac{\pi}{4}+\left(2 n_{2}+1-n_{1}\right) \frac{\pi}{2}
\end{aligned} \quad n_{1}, n_{2} \in \mathbb{Z}
$$

Optics measurement

- Optimum phase advances

$$
\beta_{i}=\frac{\epsilon_{i j k} \cot \left(\phi_{i, j}\right)+\epsilon_{i k j} \cot \left(\phi_{i, k}\right)}{\epsilon_{i j k} \frac{M_{11(i, j)}}{M_{12(i, j)}}+\epsilon_{i k j} \frac{M_{11(i, k)}}{M_{12(i, k)}}}
$$

$$
\begin{aligned}
\phi_{i, j} & =\frac{\pi}{4}+n_{1} \frac{\pi}{2} \\
\phi_{i, k} & =\frac{\pi}{4}+\left(2 n_{2}+1-n_{1}\right) \frac{\pi}{2}
\end{aligned} \quad n_{1}, n_{2} \in \mathbb{Z}
$$

Optics measurement

- Optimum phase advances

$$
\beta_{i}=\frac{\epsilon_{i j k} \cot \left(\phi_{i, j}\right)+\epsilon_{i k j} \cot \left(\phi_{i, k}\right)}{\epsilon_{i j k} \frac{M_{11(i, j)}}{M_{12(i, j)}}+\epsilon_{i k j} \frac{M_{11(i, k)}}{M_{12(i, k)}}}
$$

$$
\begin{aligned}
& \phi_{i, j}=\frac{\pi}{4}+n_{1} \frac{\pi}{2}, \\
& \phi_{i, k}=\frac{\pi}{4}+\left(2 n_{2}+1-n_{1}\right) \frac{\pi}{2},
\end{aligned} \quad n_{1}, n_{2} \in \mathbb{Z} .
$$

- Multiples of π should be avoided as the cotangent becomes infinite

Situation in the arcs

- Phase advances between consecutive BPMs not always suited for measurement
- Previous implementation used only neighboring BPMs
- Optimum if probed BPM in the middle
- If probed BPM right/left of other BPMs the optimum is to skip one BPM

Situation in the interaction regions (IRs)

- Phase advances are irregular and can be very small
- Using neighboring BPM will result in large uncertainties

Sketch of phase advances in IR4

Improvements

Improvements

- Increase the range from which BPM combinations are chosen
- Choose BPM combinations with good phase advances

Improvements

- Consider more β_{i} from different BPM combinations
- Minimize S (least squares)

$$
\begin{gathered}
S(\beta)=\sum_{i=1}^{N} \sum_{j=1}^{N}\left(\beta_{i}-\beta\right) V_{i j}^{-1}\left(\beta_{j}-\beta\right) \\
\beta=\sum_{i=1}^{N} w_{i} \beta_{i} \quad w_{i}=\frac{\sum_{k=1}^{N} V_{i k}^{-1}}{\sum_{k=1}^{N} \sum_{j=1}^{N} V_{j k}^{-1}} .
\end{gathered}
$$

Improvements

- Consider more β_{i} from different BPM combinations
- Minimize S (least squares)

$$
\begin{gathered}
S(\beta)=\sum_{i=1}^{N} \sum_{j=1}^{N}\left(\beta_{i}-\beta\right) V_{i j}^{-1}\left(\beta_{j}-\beta\right) \\
\beta=\sum_{i=1}^{N} w_{i} \beta_{i} \quad w_{i}=\frac{\sum_{k=1}^{N} V_{i k}^{-1}}{\sum_{k=1}^{N} \sum_{j=1}^{N} V_{j k}^{-1}} .
\end{gathered}
$$

Statistical error

- Uncertainty of the phase advance derived as standard deviation of n measurement files

$$
\sigma_{\phi_{i, j}}=t(n) \sqrt{\frac{1}{n-1} \sum_{k=1}^{n}\left(\overline{\phi_{i, j}}-\phi_{i, j,(k)}\right)^{2}}
$$

- $t(n)$ is a correction for small sample size from Student t-distribution

Number of measurements	$\boldsymbol{t}(\boldsymbol{n} \boldsymbol{)}$
2	1.84
3	1.32
4	1.20
5	1.15
10	1.06

- Amount of measurements is always limited due to beam time

Statistical error

- All phase advances that share one BPM are correlated

$$
\rho\left(\phi_{i, j}, \phi_{i, k}\right)=\frac{\partial \phi_{i, j}}{\partial \phi_{i}} \frac{\partial \phi_{i, k}}{\partial \phi_{i}} \frac{\sigma_{\phi_{i}}^{2}}{\sigma_{\phi_{i, j}} \sigma_{\phi_{i, k}}} .
$$

- Uncertainty of phase advance from standard deviation of all measurement files
- Not possible for single phase uncertainty since the value is arbitrary and may vary from measurement to measurement

Statistical error

- Phase uncertainty depends on beta-function

$$
\sigma_{\phi} \sim \beta^{-\frac{1}{2}}
$$

- Approximate single phase uncertainty as

$$
\sigma_{\phi_{i, j}}^{2}=\sigma_{\phi_{i}}^{2}\left(1+\frac{\beta_{i}}{\beta_{j}}\right)
$$

Statistical error

- For a probed BPM with ϕ_{1} the covariance matrix is

$$
\begin{array}{r}
C_{i-1, j-1}=\rho\left(\phi_{1, i}, \phi_{1, j}\right) \sigma_{\phi_{1, i}} \sigma_{\phi_{1, j}}, \\
i \geq 2, j \geq 2
\end{array}
$$

- This can be transformed to a covariance matrix for the different beta-functions

$$
T=\left(\begin{array}{ccc}
\frac{\partial \beta_{1}}{\partial \phi_{1,2}} & \cdots & \frac{\partial \beta_{N}}{\partial \phi_{1,2}} \\
\vdots & \ddots & \vdots \\
\frac{\partial \beta_{1}}{\partial \phi_{1, n}} & \cdots & \frac{\partial \boldsymbol{\beta}_{N}}{\partial \phi_{1, n}}
\end{array}\right) \quad \quad V_{\text {stat }}=T^{T} C T
$$

Statistical error

- Test of error bars in a simulation show good agreement

Systematic errors

$$
\beta_{i}=\frac{\epsilon_{i j k} \cot \left(\phi_{i, j}\right)+\epsilon_{i k j} \cot \left(\phi_{i, k}\right)}{\epsilon_{i j k} \frac{\mathbf{M}_{11}(i, j)}{\mathbf{M}_{12(i, j)}}+\epsilon_{i k j} \frac{\mathbf{M}_{11}(i, k)}{\mathbf{M}_{12(i, k)}}}
$$

- Improve the accuracy of the optics model
- Include measured dipole b2 errors

Systematic errors

$$
\beta_{i}=\frac{\epsilon_{i j k} \cot \left(\phi_{i, j}\right)+\epsilon_{i k j} \cot \left(\phi_{i, k}\right)}{\epsilon_{\mathrm{ijk}} \frac{\mathrm{M}_{11(\mathrm{i}, \mathrm{j})}}{\mathrm{M}_{12(\mathrm{i}, \mathrm{j})}}+\epsilon_{\mathrm{ikj}} \frac{\mathrm{M}_{11(\mathrm{i}, \mathrm{k})}}{\mathrm{M}_{12(\mathrm{i}, \mathrm{k})}}}
$$

- We consider the following perturbations of the optics model
- Uncertainty of dipole b2 errors
- Quadrupole gradient uncertainty
- Longitudinal displacement of quadrupoles
- Transverse displacement of sextupoles

Systematic errors

- Monte-Carlo Simulation using MADX for deriving the covariance matrix
$\Rightarrow V_{\text {syst }}$

Systematic errors

- Monte-Carlo Simulation using MADX for deriving the covariance matrix
- $V_{\text {syst }}$

BPM combination	Systematic er
$\triangle:$ probed, \triangle : used, \triangle : unused	
$\triangle \triangle \triangle \triangle \triangle \triangle \triangle$	0.3
$\triangle \triangle \triangle \triangle \triangle \triangle \triangle$	0.4
$\triangle \triangle \triangle \triangle \triangle \triangle \triangle$	1.0
$\triangle \triangle \triangle \triangle \triangle \triangle \triangle$	1.1
$\triangle \triangle \triangle \triangle \triangle \triangle \triangle$	1.4
$\triangle \triangle \triangle \triangle \triangle \triangle \triangle$	1.7
$\triangle \triangle \triangle \triangle \triangle \triangle \triangle$	1.8
$\triangle \triangle \triangle \triangle \triangle \triangle \triangle$	7.1
$\triangle \triangle \triangle \triangle \triangle \triangle \triangle$	7.9

Systematic errors

- Monte-Carlo Simulation using MADX for deriving the covariance matrix
- $V_{\text {syst }}$

BPM combination	Systematic error (\%)		
\triangle : probed, \triangle : used, \triangle : unused		$\triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \Delta$	22.3
$\triangle \triangle \triangle \triangle \triangle \triangle \triangle$	0.3	$\triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle$	22.3 1.3
$\triangle \triangle \triangle \triangle \triangle \triangle \triangle$	0.4 1.0	$\triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle$	1.3
$\Delta \triangle \Delta \Delta \Delta \Delta \Delta$	1.1	$\triangle \triangle \triangle \Delta \triangle \triangle \triangle \triangle \Delta \triangle \Delta$	6.1
$\triangle \triangle \triangle \Delta \triangle \Delta$	1.4	$\triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle$	1.0
$\triangle \triangle \triangle \triangle \triangle \triangle \triangle$	1.7	$\triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle$	3.0
$\triangle \triangle \triangle \triangle \triangle \triangle \triangle$	1.8	$\triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle$	4.5
$\triangle \triangle \triangle \triangle \triangle \triangle \triangle$	7.1 7.9	$\triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle$	4.5 5.2
		$\triangle \triangle \triangle \triangle \triangle \Delta \triangle \triangle \triangle \Delta \triangle$	1.6

Systematic errors

- Final covariance matrix $\quad V_{i j}=V_{i j, s t a t}+V_{i j, s y s t}$

$$
\begin{gathered}
S(\beta)=\sum_{i=1}^{N} \sum_{j=1}^{N}\left(\beta_{i}-\beta\right) V_{i j}^{-1}\left(\beta_{j}-\beta\right) \\
\beta=\sum_{i=1}^{N} w_{i} \beta_{i} \quad w_{i}=\frac{\sum_{k=1}^{N} V_{i k}^{-1}}{\sum_{k=1}^{N} \sum_{j=1}^{N} V_{j k}^{-1}} .
\end{gathered}
$$

- Computation of systematic covariance matrix time consuming for large ranges of BPMs
- How many BPM combinations should be regarded?

Uncertainty from simulated measurement

- Simulation of optics measurement under realistic conditions
- Scan of using different amount of BPM combinations which are chosen from different range of BPMs
- Accuracy: average relative shift from true value
- Precision: average relative spread

Hardware / Software

- Precision of phase advance depend on length of turn-by-turn data

1. AC-dipole \longrightarrow increase excitation time
2. $\mathrm{BPM} \longrightarrow$ adapt software for longer acquisition time

- Around factor 3 longer (approx. 6000 turns)
- Improved non-linear calibration of BPMs expected

Beta-function during the ramp

- Propagation to beam wire scanner
- New analytic equations for error propagation

$$
\sigma_{\beta_{s}}^{2}=\left(\beta_{s} \sin (2 \phi) \frac{\alpha_{0}}{\beta_{0}}+\beta_{s} \cos (2 \phi) \frac{1}{\beta_{0}}\right)^{2} \sigma_{\beta_{0}}^{2}+\left(\beta_{s} \sin (2 \phi)\right)^{2} \sigma_{\alpha_{0}}^{2}
$$

Beta-function during the ramp

- Propagation to beam wire scanner
- New analytic equations for error propagation

$$
\sigma_{\beta_{s}}^{2}=\left(\beta_{s} \sin (2 \phi) \frac{\alpha_{0}}{\beta_{0}}+\beta_{s} \cos (2 \phi) \frac{1}{\beta_{0}}\right)^{2} \sigma_{\beta_{0}}^{2}+\left(\beta_{s} \sin (2 \phi)\right)^{2} \sigma_{\alpha_{0}}^{2}
$$

Summary

- LHC run at 6.5 TeV requires more precise optics measurements and corrections
- Full covariance matrix for beta-measurement
- Increased resolution when combining more data
- Re-analyzing 2012 data gives better resolution for
- Beta-function at IP
- Beta-function during the ramp

Outlook

- Optics commissioning at 6.5 TeV is near
- Systematic errors
- BPM displacements not yet regarded
- For calculation of local corrections
- For propagation of optical parameters to elements

Thank you for your attention!

