Optics measurement algorithms for the proton energy frontier

Andy Langner

European Organization for Nuclear Research (CERN) & Universitaet Hamburg Joint DESY and University of Hamburg Accelerator Physics Seminar, 18.11.2014

Outline

- Motivation
- β -function from BPM turn-by-turn data
- Improvements
 - Error analysis
 - Model accuracy
 - Hardware/Software

Motivation

- Tight tolerances for β -beat due to
 - Available mechanical aperture

"For the LHC the total tolerance for the β-beat has been specified as 20 %."

-LHC Design Report I

 In 2012 a β-beat of up to 100% was observed before local corrections

- Run II at 6.5 TeV —> allows for smaller beta*
- —> enhances optics errors of triplet magnets
- More quadrupole magnets in saturation regime
- Broken MQT magnet (tune trim)

Motivation

• Extrapolating to 40cm beta* at 6.5 TeV

- Higher damage potential at 6.5 TeV
- Limits maximum excitation amplitude and total beam charge
- Reduced signal to noise ratio for optics measurement

- In 2012 insufficient resolution to measure:
 - IP beta-functions
 - Beta-functions during the ramp for emittance studies

Measurement method

• Measurement of BPM turn-by-turn data x_i

- Measurement of BPM turn-by-turn data x_i
- Harmonic analysis $C(w) = \sum_{i=0}^{N-1} x_i \cos(w i), S(w) = \sum_{i=0}^{N-1} x_i \sin(w i)$

- Measurement of BPM turn-by-turn data x_i
- Harmonic analysis $C(w) = \sum_{i=0}^{N-1} x_i \cos(w i), S(w) = \sum_{i=0}^{N-1} x_i \sin(w i)$
- Phase advance of betatron oscillation between BPM

$$\phi(w) = -\arctan\left(\frac{S(w)}{C(w)}\right)$$

- Measurement of BPM turn-by-turn data x_i
- Harmonic analysis $C(w) = \sum_{i=0}^{N-1} x_i \cos(w i), S(w) = \sum_{i=0}^{N-1} x_i \sin(w i)$
- Phase advance of betatron oscillation between BPM

$$\phi(w) = -\arctan\left(\frac{S(w)}{C(w)}\right)$$

- Measurement of BPM turn-by-turn data x_i
- Harmonic analysis $C(w) = \sum_{i=0}^{N-1} x_i \cos(w \, i), S(w) = \sum_{i=0}^{N-1} x_i \sin(w \, i)$
- Phase advance of betatron oscillation between BPM

$$\phi(w) = -\arctan\left(\frac{S(w)}{C(w)}\right)$$

$$\beta_i = \frac{\epsilon_{ijk} \cot(\phi_{i,j}) + \epsilon_{ikj} \cot(\phi_{i,k})}{\epsilon_{ijk} \frac{M_{11(i,j)}}{M_{12(i,j)}} + \epsilon_{ikj} \frac{M_{11(i,k)}}{M_{12(i,k)}}}$$

$$\beta_i = \frac{\epsilon_{ijk} \cot(\phi_{i,j}) + \epsilon_{ikj} \cot(\phi_{i,k})}{\epsilon_{ijk} \frac{M_{11(i,j)}}{M_{12(i,j)}} + \epsilon_{ikj} \frac{M_{11(i,k)}}{M_{12(i,k)}}}$$

• Optimum phase advances

$$\beta_i = \frac{\epsilon_{ijk} \cot(\phi_{i,j}) + \epsilon_{ikj} \cot(\phi_{i,k})}{\epsilon_{ijk} \frac{M_{11(i,j)}}{M_{12(i,j)}} + \epsilon_{ikj} \frac{M_{11(i,k)}}{M_{12(i,k)}}}$$

$$\phi_{i,j} = \frac{\pi}{4} + n_1 \frac{\pi}{2}, \qquad n_1, n_2 \in \mathbb{Z}.$$

$$\phi_{i,k} = \frac{\pi}{4} + (2n_2 + 1 - n_1) \frac{\pi}{2}, \qquad n_1, n_2 \in \mathbb{Z}.$$

• Optimum phase advances

$$\beta_i = \frac{\epsilon_{ijk} \cot(\phi_{i,j}) + \epsilon_{ikj} \cot(\phi_{i,k})}{\epsilon_{ijk} \frac{M_{11(i,j)}}{M_{12(i,j)}} + \epsilon_{ikj} \frac{M_{11(i,k)}}{M_{12(i,k)}}}$$

$$\phi_{i,j} = \frac{\pi}{4} + n_1 \frac{\pi}{2}, \qquad n_1, n_2 \in \mathbb{Z}.$$

$$\phi_{i,k} = \frac{\pi}{4} + (2n_2 + 1 - n_1) \frac{\pi}{2}, \qquad n_1, n_2 \in \mathbb{Z}.$$

• Optimum phase advances

$$\beta_i = \frac{\epsilon_{ijk} \cot(\phi_{i,j}) + \epsilon_{ikj} \cot(\phi_{i,k})}{\epsilon_{ijk} \frac{M_{11(i,j)}}{M_{12(i,j)}} + \epsilon_{ikj} \frac{M_{11(i,k)}}{M_{12(i,k)}}}$$

$$\phi_{i,j} = \frac{\pi}{4} + n_1 \frac{\pi}{2}, \qquad n_1, n_2 \in \mathbb{Z}.$$

$$\phi_{i,k} = \frac{\pi}{4} + (2n_2 + 1 - n_1) \frac{\pi}{2}, \qquad n_1, n_2 \in \mathbb{Z}.$$

$$\beta_i = \frac{\epsilon_{ijk} \cot(\phi_{i,j}) + \epsilon_{ikj} \cot(\phi_{i,k})}{\epsilon_{ijk} \frac{M_{11(i,j)}}{M_{12(i,j)}} + \epsilon_{ikj} \frac{M_{11(i,k)}}{M_{12(i,k)}}}$$

$$\phi_{i,j} = \frac{\pi}{4} + n_1 \frac{\pi}{2}, \qquad n_1, n_2 \in \mathbb{Z}.$$

$$\phi_{i,k} = \frac{\pi}{4} + (2n_2 + 1 - n_1) \frac{\pi}{2}, \qquad n_1, n_2 \in \mathbb{Z}.$$

• Multiples of π should be avoided as the cotangent becomes infinite

Situation in the arcs

- Phase advances between consecutive BPMs not always suited for measurement
- Previous implementation used only neighboring BPMs
- Optimum if probed BPM in the middle
- If probed BPM right/left of other BPMs the optimum is to skip one BPM

Situation in the interaction regions (IRs)

- Phase advances are irregular and can be very small
- Using neighboring BPM will result in large uncertainties

Sketch of phase advances in IR4

- Increase the range from which BPM combinations are chosen
- Choose BPM combinations with good phase advances

- Consider more β_i from different BPM combinations
- Minimize S (least squares)

$$S(\beta) = \sum_{i=1}^{N} \sum_{j=1}^{N} (\beta_i - \beta) V_{ij}^{-1} (\beta_j - \beta)$$

$$\beta = \sum_{i=1}^{N} w_i \beta_i \qquad \qquad w_i = \frac{\sum_{k=1}^{N} V_{ik}^{-1}}{\sum_{k=1}^{N} \sum_{j=1}^{N} V_{jk}^{-1}}.$$

- Consider more β_i from different BPM combinations
- Minimize S (least squares)

$$S(\beta) = \sum_{i=1}^{N} \sum_{j=1}^{N} (\beta_i - \beta) V_{ij}^{-1} (\beta_j - \beta)$$

$$\beta = \sum_{i=1}^{N} w_i \beta_i \qquad \qquad w_i = \frac{\sum_{k=1}^{N} V_{ik}^{-1}}{\sum_{k=1}^{N} \sum_{j=1}^{N} V_{jk}^{-1}}.$$

Problem: Good knowledge of V_{ij}

 Uncertainty of the phase advance derived as standard deviation of n measurement files

$$\sigma_{\phi_{i,j}} = t(n) \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} \left(\overline{\phi_{i,j}} - \phi_{i,j,(k)}\right)^2}$$

- t(n) is a correction for small sample size from Student
 t-distribution
- Amount of measurements is always limited due to beam time

Number of measurements	t(n)
2	1.84
3	1.32
4	1.20
5	1.15
10	1.06

• All phase advances that share one BPM are correlated

$$\rho(\phi_{i,j},\phi_{i,k}) = \frac{\partial \phi_{i,j}}{\partial \phi_i} \frac{\partial \phi_{i,k}}{\partial \phi_i} \frac{\sigma_{\phi_i}^2}{\sigma_{\phi_{i,j}} \sigma_{\phi_{i,k}}}.$$

- Uncertainty of phase advance from standard deviation of all measurement files
- Not possible for single phase uncertainty since the value is arbitrary and may vary from measurement to measurement

Phase uncertainty depends on beta-function

 $\sigma_{\phi} \sim \beta^{-\frac{1}{2}}$

• Approximate single phase uncertainty as

$$\sigma_{\phi_{i,j}}^2 = \sigma_{\phi_i}^2 \left(1 + \frac{\beta_i}{\beta_j} \right)$$

• For a probed BPM with ϕ_1 the covariance matrix is

$$C_{i-1,j-1} = \rho(\phi_{1,i}, \phi_{1,j}) \sigma_{\phi_{1,i}} \sigma_{\phi_{1,j}},$$

$$i \ge 2, j \ge 2$$

• This can be transformed to a covariance matrix for the different beta-functions

$$T = \begin{pmatrix} \frac{\partial \beta_1}{\partial \phi_{1,2}} & \cdots & \frac{\partial \beta_N}{\partial \phi_{1,2}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \beta_1}{\partial \phi_{1,n}} & \cdots & \frac{\partial \beta_N}{\partial \phi_{1,n}} \end{pmatrix}$$

$$V_{stat} = T^T C T$$

Test of error bars in a simulation show good agreement

$$\beta_{i} = \frac{\epsilon_{ijk} \cot(\phi_{i,j}) + \epsilon_{ikj} \cot(\phi_{i,k})}{\epsilon_{ijk} \frac{M_{11(i,j)}}{M_{12(i,j)}} + \epsilon_{ikj} \frac{M_{11(i,k)}}{M_{12(i,k)}}}$$

- Improve the accuracy of the optics model
- Include measured dipole b2 errors

$$\beta_{i} = \frac{\epsilon_{ijk} \cot(\phi_{i,j}) + \epsilon_{ikj} \cot(\phi_{i,k})}{\epsilon_{ijk} \frac{M_{11(i,j)}}{M_{12(i,j)}} + \epsilon_{ikj} \frac{M_{11(i,k)}}{M_{12(i,k)}}}$$

- We consider the following perturbations of the optics model
 - Uncertainty of dipole b2 errors
 - Quadrupole gradient uncertainty
 - Longitudinal displacement of quadrupoles
 - Transverse displacement of sextupoles

Monte-Carlo Simulation using MADX for deriving the covariance matrix

Monte-Carlo Simulation using MADX for deriving the covariance matrix

 $\rightarrow V_{syst}$

Systematic error (%)
0.3
0.4
1.0
1.1
1.4
1.7
1.8
7.1
7.9

 Monte-Carlo Simulation using MADX for deriving the covariance matrix

 $\rightarrow V_{syst}$

BPM combination	Systematic error $(\%)$		
\triangle : probed, \triangle : used, \triangle : unused			20.3
	0.3		22.0
	0.4	$\blacksquare \blacksquare \blacksquare$	1.3
	1.0	$\blacktriangle \land \land$	1.9
$\blacktriangle \bigtriangleup \checkmark \bigtriangleup \bigtriangleup \bigtriangleup$	1.1	$\blacktriangle \land \land$	6.1
	1.4		1.0
	1.7		3.0
	1.8		
	7.1		4.5
	7.9	$\blacktriangle \land \land$	5.2
		$\blacktriangle \land \land$	1.6

• Final covariance matrix $V_{ij} = V_{ij,stat} + V_{ij,syst}$

$$S(\beta) = \sum_{i=1}^{N} \sum_{j=1}^{N} (\beta_i - \beta) V_{ij}^{-1} (\beta_j - \beta)$$

$$\beta = \sum_{i=1}^{N} w_i \beta_i \qquad \qquad w_i = \frac{\sum_{k=1}^{N} V_{ik}^{-1}}{\sum_{k=1}^{N} \sum_{j=1}^{N} V_{jk}^{-1}}.$$

- Computation of systematic covariance matrix time consuming for large ranges of BPMs
- How many BPM combinations should be regarded?

Uncertainty from simulated measurement

- Simulation of optics measurement under realistic conditions
- Scan of using different amount of BPM combinations which are chosen from different range of BPMs
- Accuracy: average relative shift from true value
- Precision: average relative spread

Hardware / Software

- Precision of phase advance depend on length of turn-by-turn data
- 1. AC-dipole —> increase excitation time
- 2. BPM —> adapt software for longer acquisition time
- Around factor 3 longer (approx. 6000 turns)

Improved non-linear calibration of BPMs expected

A. Nosych, 'Geometrical non-linearity correction procedure of LHC beam position monitors'

Beta-function during the ramp

- Propagation to beam wire scanner
- New analytic equations for error propagation

$$\sigma_{\beta_s}^2 = \left(\beta_s \sin(2\phi)\frac{\alpha_0}{\beta_0} + \beta_s \cos(2\phi)\frac{1}{\beta_0}\right)^2 \sigma_{\beta_0}^2 + \left(\beta_s \sin(2\phi)\right)^2 \sigma_{\alpha_0}^2$$

Beta-function during the ramp

- Propagation to beam wire scanner
- New analytic equations for error propagation

Summary

- LHC run at 6.5 TeV requires more precise optics measurements and corrections
- Full covariance matrix for beta-measurement
- Increased resolution when combining more data
- Re-analyzing 2012 data gives better resolution for
 - Beta-function at IP
 - Beta-function during the ramp

Outlook

- Optics commissioning at 6.5 TeV is near
- Systematic errors
 - BPM displacements not yet regarded
 - For calculation of local corrections
 - For propagation of optical parameters to elements

Thank you for your attention!