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● short pulses allow for time-resolved imaging of nanoparticles

Motivation
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Long. distribution of FEL pulse FEL pulse spectrume- bunch length
(Gaussian, rms)

10 µm (30 fs)
200 pC

standard short 
pulse operation

1 µm (3 fs)
20 pC

(single spike)

Our Goal

Courtesy of M. RehdersGENESIS 1.3 Simulation

Motivation
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The Project

Diagnostic Development
for Small Charges

Beam dynamics calculations
Start-to-end simulations

The short-pulse project
at FLASH

Commissioning of
the new photo-injector Laser

 Supported by BMBF under contract 
05K10GU2 & FS FLASH 301

Laser System Diagnostics
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Outline

 What are the requirements for a short FEL pulse?

 How can we shorten the electron bunch?

 The New Laser System.

 Optimisation of Laser Parameters for Short Bunch Length and Low Emittance
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First Results and SASE generation
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How can we shorten the electron bunch?
Optimizing small bunch length and peak current
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FLASH
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FLASH

6.4 ps
80 pC – 1 nC

30-200 fs 30-200fs

laser pulse length (rms) bunch duration (rms) FEL pulse length (FWHM)

Compression factor : ~30 - 220

Standard FLASH Operation
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FLASH

laser pulse length (rms) bunch duration (rms) FEL pulse length (FWHM)

6.4 ps
20pC

~3 fs ~3 fs

Compression factor : ~2000

Singe Spike Operation at FLASH
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FLASH

laser pulse length (rms) bunch duration (rms) FEL pulse length (FWHM)

0.4 - 2.0 ps
20pC

~3 fs ~3 fs

Compression factor : ~130-390

Singe Spike Operation at FLASH
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FLASH

cathode material Cs
2
Te

injector laser 
wavelength UV (around 260nm)

laser pulse energy several nJ

laser pulse length < 5ps rms

repetition rate 1 MHz // 10 Hz trains

transversal spot size ~ mm
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New Laser System
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New Laser System

oscillator Onefive Origami 10

1030nm, 260mW, 54MHz, 400fs
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New Laser System

oscillator Onefive Origami 10

1030nm, 260mW, 54MHz, 400fs
amplifier 2stage Amphos amplifier

1030nm, 10W, 1MHz, 600fs
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New Laser System

oscillator Onefive Origami 10

1030nm, 260mW, 54MHz, 400fs
amplifier 2stage Amphos amplifier

1030nm, 10W, 1MHz, 600fs
acousto-optic 
modulator

arbitrary pulse picking
 → 10Hz pulse trains
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oscillator Onefive Origami 10

1030nm, 260mW, 54MHz, 400fs
amplifier 2stage Amphos amplifier

1030nm, 10W, 1MHz, 600fs
acousto-optic 
modulator

arbitrary pulse picking
 → 10Hz pulse trains

4th harmonic LBO + BBO / 1030  257.5nm→
 @ 10% efficiency  1µJ→

New Laser System
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New Laser System – Frequency Conversion

BBOBBO
10 µJ

> 500 mm 290 mm
10 nJ
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BBO: Beta Barium Borate

f= 500 / 1000 mm

Design efficiency: 10% for collimated beam 
(~800µm beam diameter)

achieved efficiency: 0.1%
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New Laser System – Frequency Conversion

BBOBBO
10 µJ

> 500 mm 290 mm
10 nJ

f= 500 mm

January setup (1% achieved efficiency, SASE Setup)

BBOBBO

~3 mm ~1 mm

10 µJ 100 nJ

f = 100 mm f= 150 mm

problems with January setup:
● focussing too strong, causes an imperfect wavefront, this affects the transversal 

profile at cathode
● problems with phase matching

 → less electron charge stability at the gun
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New Laser System – Frequency Conversion

BBOBBO
10 µJ

> 500 mm 290 mm
10 nJ

f= 500 / 1000 mm

January setup (1% achieved efficiency, SASE setup)

BBOBBO

~3 mm ~1 mm

10 µJ 100 nJ

f = 100 mm f= 150 mm

Current setup (~11% efficiency)

8.3 µJ 0.8 µJ3.2 µJ

15 mm 2 mm
f = 300 mm f = 300 mm

LBO BBO
39 % 10 %

LBO: Lithium Triborate
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oscillator Onefive Origami 10

1030nm, 260mW, 54MHz, 400fs
amplifier 2stage Amphos amplifier

1030nm, 10W, 1MHz, 600fs
acousto-optic 
modulator

arbitrary pulse picking
 → 10Hz pulse trains

4th harmonic LBO + BBO / 1030  257.5nm→
 @ 10% efficiency  1µJ→

stretcher Stretching pulse up to 4 ps

New Laser System
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Optical Stretcher

Fourier-limited laser pulses can be 
stretched in their duration by 
introducing a group-delay dispersion 
(chirp).

phase advance throughout 
stretcher
central frequency

Optical path length depends on 
frequency.  Dispersion→
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Optical Stretcher

● variable grating distance and thus 
pulse length come with timing 
differences that have to be corrected

● a calibration curve has to be taken 
that relates grating distance to pulse 
length

Grating diffraction introduces 
different path lengths for different 
wavelength  Dispersion.→

Principle very similar to an electron 
bunch compressor.
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Optical Stretcher

● Approaches linear slope for big L
0

● measured curve will be shifted to the right due to initial chirp, with knowledge of the 
spectrum (  spectrometer), chirp before the stretcher can be calculated by finding the →
stretcher setting of minimal pulse length
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oscillator Onefive Origami 10

1030nm, 260mW, 54MHz, 400fs
amplifier 2stage Amphos amplifier

1030nm, 10W, 1MHz, 600fs
acousto-optic 
modulator

arbitrary pulse picking
 → 10Hz pulse trains

4th harmonic LBO + BBO / 1030  257.5nm→
 @ 10% efficiency  1µJ→

stretcher Stretching pulse up to 4 ps

telescope reducing beam size up to a 
factor of 5

New Laser System
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oscillator Onefive Origami 10

1030nm, 260mW, 54MHz, 400fs
amplifier 2stage Amphos amplifier

1030nm, 10W, 1MHz, 600fs
acousto-optic 
modulator

arbitrary pulse picking
 → 10Hz pulse trains

4th harmonic LBO + BBO / 1030  257.5nm→
 @ 10% efficiency  1µJ→

stretcher Stretching pulse up to 4 ps

telescope reducing beam size up to a 
factor of 5

attenuator 2 attenuators ( λ/2 plates + 
polarisers)

aperture
(BSA)

aperture with different radii, 
imaged on cathode

New Laser System
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What is the optimum distribution at the cathode?
Optimizing bunch length and emittance
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Normalized emittance is determined 
by gun and injector laser 

is a function of laser pulse shape

Solenoid magnet focussing forces:

For stable machine operation, the electron bunch duration has to be small to allow for 
small compression factors. Emittance should be small for high FEL output power.

emittance at the gun

P. Schmüser, M. Dohlus und J. Rossbach, Ultraviolet and Soft X-Ray Free-Electron Lasers, 
Springer-Velrag Berlin Heidelberg, 2008

Cathode
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Feng Zhou et al, Impact of the laser spatial distribution on the LCLS 
photocathode gun operation, PRST-AB  15, 090701, 2012

blue

red

black

space charge forces of different transverse electron distributions

Emittance and Bunch Length Optimisation
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● theoretically best distribution is a 3D ellipsoid 
generating linear space charge forces [7]

Gaussian uniform cylinder ellipsoid

● truncated gaussian is very close to ellipsoid 
(transversally)

● spatial truncated Gaussians reduced emittance by 
~25% at LCLS at 150pC [8, Feng Zhou]

Emittance and Bunch Length Optimisation
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x [a.u.]

intensity [a.u.]

Emittance and Bunch Length Optimisation
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x [a.u.]

intensity [a.u.]

Emittance and Bunch Length Optimisation
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x [a.u.]

intensity [a.u.]

Emittance and Bunch Length Optimisation



05.11.13 Tim Plath 35

x [a.u.]

intensity [a.u.]

Emittance and Bunch Length Optimisation
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● first simulations (1.0 ps laser pulse) to find the parameter set σ
inp

, a (aperture) for 

minimum emittance have been made
● for each simulated pair, the solenoid's magnetic field strength has been scanned

Emittance and Bunch Length Optimisation

parameter value

laser pulse duration (rms) 1.0 ps

bunch charge 20 pC

macro particles 20 000

gun gradient 50 MV/m

laser spot profile truncated Gaussian

laser spot size (rms) 0.25 - 3.0 mm

aperture size 0.3 – 3.0 mm
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Emittance and Bunch Length Optimisation

Big transverse aperture size for smallest possible bunch length.

With a desired final length about 1µm and a compression factor of <450, the threshold 
for the bunch length at the end of the injector is about 0.45mm.
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Emittance and Bunch Length Optimisation
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Emittance and Bunch Length Optimisation

With the prior limit for the compression factor, 
the optimum transverse distribution would be.
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Reduction

● round apertures with different diameters from 0.15 
mm up to 2.5 mm

● mounted on a movable stage to move in x,y,z 
direction

● aperture is imaged 1:1 on FLASH cathode
● use variable telescope for stepless spot size selection 

on aperture

d
1

d
2

f
1

f
2

f
3

Telescope & BSA
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Reduction

Δx2 Δx

preserves collimated 
beam

d
2
 increased by Δx

● round apertures with different diameters from 0.15 
mm up to 2.5 mm

● mounted on a movable stage to move in x,y,z 
direction

● aperture is imaged 1:1 on FLASH cathode
● use variable telescope for stepless spot size selection 

on aperture

Telescope & BSA
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f
3
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for values f
1
= 50mm, f

2
= -25mm, f

3
= 300mm

R

● Depending on magnification 
needed, the focal lengths of the 
lenses have to be chosen

● stepless magnification allows for 
stepless beam shape choosing 
between Gaussian and flattop

● available displacement allows for 
reduction of the laser spot size up 
to a factor of 5.

Reduction

d
2

Telescope & BSA
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How can we measure laser parameters?
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Spectrometer

Measurements:
● What is the UV 

spectrum?
● Get an idea of 

spectral stability 
of the laser

Requirements:
● wavelength resolution of about 10 pm
● Provide diagnostics for all three injector lasers 

with a bandwidth of about 1nm. This gives a 
working point for the spectrometer: 256-268nm

Components:
● Using grating with 4500 lines/mm
● UV Camera with 4.65 µm pixel size

Laser Diagnostics

design resolution
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Quadrant Diode

Measurements:
● Position of the intra train laser pulses 

 stability during pulse train→
● Laser pulse energy

Alignment Camera
● Use spectrometer camera as virtual cathode for laser alignment
● Imaging of 50µm up to 2mm apertures

Requirements:
● Fast electronics working at least 1MHz (repetition rate of laser pulses)

aus [1]

Laser Diagnostics
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working principle
● Electron bunches with a similar temporal distribution 

are generated in a photo-cathode by a photon pulse
● electrons get accelerated onto fluorescence screen
● electrons get deflected by a fast time varying high 

voltage
● the flourescence screen translates electrons back to 

photons which can be detected

Laser pulse length can 
be measured down to a 
limit of about 0.5 ps.

Streak Camera

Laser Diagnostics
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Measurements and Shifts
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Laser Beam

Measurements Jan 2013 [FWHM]

● short pulse without stretcher:

● short pulse with stretcher:

standard laser 
for user operation
(May 2012)

Position instability 
about 3 µm at a total 
laser pulse width of 
1mm. (IR)

IR transversal 
profile
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Sep 2012 Jan 2013

Charge Stability

~3 mm ~1 mm

10 µJ 100 nJ

f = 100 mm f= 150 mm

10 µJ
290 mm

10 nJ

f= 500 / 1000 mm
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SASE – Jan 2013

parameters 09.01.13 11.01.13

injector laser pulse duration (rms) 1.0 ps 1.0 ps

bunch chage 35 pC 80 pC

bunch duration (rms) [LOLA] 35 fs 78 fs

wavelength 13.5 nm 13 nm

number of modes in FEL pulse unknown ~ 5.7

FEL pulse duration (rms) unknown ~ 50 fs

compression factor ~70 ~30

SASE energy 5 µJ 25 µJ

SASE power unknown ~ 0.5 GW

SASE bandwidth unknown 0.34 %

Improved SASE stability compared to short pulse runs with standard injector laser due 
to shorter compression factors and thus more stable electron bunch length and form.
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● laser beamline with frequency conversion, stretching, transversal pulse shaping has 
been built and integrated into the control system

● after two shifts in January first SASE was generated with new injectorlaser

● first laser diagnostics have been built to characterise the laser

Goals

Enable routine operation with new short pulse laser this year:

● full control system integration has to be done (laser controls)

● characterise laser with diagnostics

● measure pulse length and emittance for different transversal laser profiles

Summary & Goals
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Commissioning and Characterisation of the 
Photo-Injector Laser for Single-Spike Operation at 
FLASH

Thank you for your attention! 
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