



# Commissioning of the new Injector Laser System for the Short Pulse Project at FLASH

Tim Plath Uni Hamburg

tim.plath@desy.de 05.11.2013

Supported by BMBF under contract 05K10GU2 & FS FLASH 301



## **Motivation**

• short pulses allow for time-resolved imaging of nanoparticles







## e<sup>-</sup> bunch length (Gaussian, rms)

10 μm (30 fs) 200 pC

# standard short pulse operation

# rt

1 μm (3 fs) 20 pC (single spike)

#### **Our Goal**

**GENESIS 1.3 Simulation** 

Long. distribution of FEL pulse



FEL pulse spectrum







Courtesy of M. Rehders







Supported by BMBF under contract 05K10GU2 & FS FLASH 301

Beam dynamics calculations Start-to-end simulations

Diagnostic Development for Small Charges

Commissioning of the new photo-injector Laser

Laser System

Diagnostics

What are the requirements for a short FEL pulse?

How can we shorten the electron bunch?

The New Laser System.

Optimisation of Laser Parameters for Short Bunch Length and Low Emittance

**Laser Diagnostics** 

**First Results and SASE generation** 













## How can we shorten the electron bunch?

Optimizing small bunch length and peak current









laser pulse length (rms)

**bunch duration (rms)** 

**FEL pulse length (FWHM)** 







laser pulse length (rms)

**bunch duration (rms)** 

**FEL pulse length (FWHM)** 







laser pulse length (rms)

**bunch duration (rms)** 

**FEL pulse length (FWHM)** 









| 315 m                        | _                     |
|------------------------------|-----------------------|
| cathode material             | Cs <sub>2</sub> Te    |
| injector laser<br>wavelength | UV (around 260nm)     |
| laser pulse energy           | several nJ            |
| laser pulse length           | < 5ps rms             |
| repetition rate              | 1 MHz // 10 Hz trains |
| transversal spot size        | ~ mm                  |

05.11.13 Tim Plath 13













oscillator Onefive Origami 10 1030nm, 260mW, 54MHz, 400fs





| oscillator | Onefive Origami 10          |  |
|------------|-----------------------------|--|
|            | 1030nm, 260mW, 54MHz, 400fs |  |
| amplifier  | 2stage Amphos amplifier     |  |
|            | 1030nm, 10W, 1MHz, 600fs    |  |





| oscillator                 | Onefive Origami 10                             |  |
|----------------------------|------------------------------------------------|--|
|                            | 1030nm, 260mW, 54MHz, 400fs                    |  |
| amplifier                  | 2stage Amphos amplifier                        |  |
|                            | 1030nm, 10W, 1MHz, 600fs                       |  |
| acousto-optic<br>modulator | arbitrary pulse picking<br>→ 10Hz pulse trains |  |

05.11.13 Tim Plath 17





| oscillator    | Onefive Origami 10          |  |
|---------------|-----------------------------|--|
|               | 1030nm, 260mW, 54MHz, 400fs |  |
| amplifier     | 2stage Amphos amplifier     |  |
|               | 1030nm, 10W, 1MHz, 600fs    |  |
| acousto-optic | arbitrary pulse picking     |  |
| modulator     | → 10Hz pulse trains         |  |
| 4th harmonic  | LBO + BBO / 1030 → 257.5nm  |  |
|               | @ 10% efficiency → 1μJ      |  |

# **New Laser System - Frequency Conversion**



**BBO:** Beta Barium Borate

f= 500 / 1000 mm

**Design efficiency:** 10% for collimated beam (~800µm beam diameter)

### achieved efficiency: 0.1%





SOLAR Laser Systems Test Curve



## **New Laser System – Frequency Conversion**



## January setup (1% achieved efficiency, SASE Setup)



#### problems with January setup:

- focussing too strong, causes an imperfect wavefront, this affects the transversal profile at cathode
- problems with phase matching
- → less electron charge stability at the gun



## **New Laser System – Frequency Conversion**



### January setup (1% achieved efficiency, SASE setup)



#### **Current setup (~11% efficiency)**



LBO: Lithium Triborate





| oscillator                 | Onefive Origami 10                             |
|----------------------------|------------------------------------------------|
|                            | 1030nm, 260mW, 54MHz, 400fs                    |
| amplifier                  | 2stage Amphos amplifier                        |
|                            | 1030nm, 10W, 1MHz, 600fs                       |
| acousto-optic<br>modulator | arbitrary pulse picking<br>→ 10Hz pulse trains |
| 4th harmonic               | LBO + BBO / 1030 → 257.5nm                     |
|                            | @ 10% efficiency → 1μJ                         |
| stretcher                  | Stretching pulse up to 4 ps                    |

05.11.13 Tim Plath 22







Fourier-limited laser pulses can be stretched in their duration by introducing a group-delay dispersion (chirp).

 $\beta = \frac{d^2\Phi}{d\omega^2} \Big|_{\omega = \omega_0}$ 

 $\Phi$  phase advance throughout stretcher

 $\omega_0$  central frequency

$$\Phi = \frac{P\omega}{c}$$
  $P = \int n(x)dx$ 

Optical path length depends on frequency. → Dispersion







Grating diffraction introduces different path lengths for different wavelength → Dispersion.

Principle very similar to an electron bunch compressor.

- variable grating distance and thus pulse length come with timing differences that have to be corrected
- a calibration curve has to be taken that relates grating distance to pulse length



## **Optical Stretcher**

- Approaches linear slope for big L<sub>0</sub>
- measured curve will be shifted to the right due to initial chirp, with knowledge of the spectrum (→ spectrometer), chirp before the stretcher can be calculated by finding the stretcher setting of minimal pulse length

#### pulse length [ps]







| oscillator                 | Onefive Origami 10                     |
|----------------------------|----------------------------------------|
|                            | 1030nm, 260mW, 54MHz, 400fs            |
| amplifier                  | 2stage Amphos amplifier                |
|                            | 1030nm, 10W, 1MHz, 600fs               |
| acousto-optic<br>modulator | arbitrary pulse picking                |
|                            | → 10Hz pulse trains                    |
| 4th harmonic               | LBO + BBO / 1030 → 257.5nm             |
|                            | @ 10% efficiency → 1μJ                 |
| stretcher                  | Stretching pulse up to 4 ps            |
| telescope                  | reducing beam size up to a factor of 5 |





| oscillator                 | Onefive Origami 10                                   |
|----------------------------|------------------------------------------------------|
|                            | 1030nm, 260mW, 54MHz, 400fs                          |
| amplifier                  | 2stage Amphos amplifier                              |
|                            | 1030nm, 10W, 1MHz, 600fs                             |
| acousto-optic<br>modulator | arbitrary pulse picking<br>→ 10Hz pulse trains       |
| 4th harmonic               | LBO + BBO / 1030 → 257.5nm<br>@ 10% efficiency → 1µJ |
| stretcher                  | Stretching pulse up to 4 ps                          |
| telescope                  | reducing beam size up to a factor of 5               |
| attenuator                 | 2 attenuators ( λ/2 plates + polarisers)             |
| aperture<br>(BSA)          | aperture with different radii,<br>imaged on cathode  |

05.11.13 Tim Plath 27



# What is the optimum distribution at the cathode?

Optimizing bunch length and emittance







P. Schmüser, M. Dohlus und J. Rossbach, Ultraviolet and Soft X-Ray Free-Electron Lasers, Springer-Velrag Berlin Heidelberg, 2008

Solenoid magnet focussing forces:  $F_{
m Sol}(r) \propto r$ 

Normalized emittance is determined by gun and injector laser

## emittance at the gun

$$\epsilon = \sqrt{\epsilon_{\rm cath}^2 + \epsilon_{\rm sc}^2 + \epsilon_{\rm RF}^2}$$
 $\epsilon_{\rm cath} \propto x_{\rm rms}$ 

 $\epsilon_{
m sc}$  is a function of laser pulse shape  $\epsilon_{
m RF} \propto \sigma_z^2$ 

For stable machine operation, the **electron bunch duration** has to be **small** to allow for small compression factors. **Emittance** should be **small** for high FEL output power.



space charge forces of different transverse electron distributions



Feng Zhou et al, Impact of the laser spatial distribution on the LCLS photocathode gun operation, PRST-AB 15, 090701, 2012





-0.2

0.2

0.4

-0.4



• theoretically best distribution is a 3D ellipsoid generating linear space charge forces [7]



- truncated gaussian is very close to ellipsoid (transversally)
- spatial truncated Gaussians reduced emittance by ~25% at LCLS at 150pC [8, Feng Zhou]





















- first simulations (1.0 ps laser pulse) to find the parameter set  $\sigma_{_{inp}}$ , a (aperture) for minimum emittance have been made
- for each simulated pair, the solenoid's magnetic field strength has been scanned

| parameter                  | value              |
|----------------------------|--------------------|
| laser pulse duration (rms) | 1.0 ps             |
| bunch charge               | 20 pC              |
| macro particles            | 20 000             |
| gun gradient               | 50 MV/m            |
| laser spot profile         | truncated Gaussian |
| laser spot size (rms)      | 0.25 - 3.0 mm      |
| aperture size              | 0.3 - 3.0  mm      |



# **Emittance and Bunch Length Optimisation**



Big transverse aperture size for smallest possible bunch length.

With a desired final length about 1 $\mu$ m and a compression factor of <450, the threshold for the bunch length at the end of the injector is about 0.45mm.



# **Emittance and Bunch Length Optimisation**





# **Emittance and Bunch Length Optimisation**





With the prior limit for the compression factor, the optimum transverse distribution would be.

$$\sigma_{inp} = 0.5 \, mm$$
$$|x| = 0.6 \, mm$$





- round apertures with different diameters from 0.15 mm up to 2.5 mm
- mounted on a movable stage to move in x,y,z direction
- aperture is imaged 1:1 on FLASH cathode
- use variable telescope for stepless spot size selection on aperture





#### Reduction

$$R = \frac{-f_2 f_3}{f_1 (f_3 + f_2 - d_2)}$$





- round apertures with different diameters from 0.15 mm up to 2.5 mm
- mounted on a movable stage to move in x,y,z direction
- aperture is imaged 1:1 on FLASH cathode
- use variable telescope for stepless spot size selection on aperture





# preserves collimated beam

# $d_{2}$ increased by $\Delta x$

#### Reduction

$$R = \frac{-f_2 f_3}{f_1 (f_3 + f_2 - d_2)}$$





- Depending on magnification needed, the focal lengths of the lenses have to be chosen
- stepless magnification allows for stepless beam shape choosing between Gaussian and flattop
- available displacement allows for reduction of the laser spot size up to a factor of 5.



for values  $f_1 = 50$ mm,  $f_2 = -25$ mm,  $f_3 = 300$ mm



# How can we measure laser parameters?

05.11.13 Tim Plath 43









## **Laser Diagnostics**

#### **Alignment Camera**

- Use spectrometer camera as virtual cathode for laser alignment
- Imaging of 50µm up to 2mm apertures

#### **Quadrant Diode**

#### Measurements:

- Position of the intra train laser pulses
   → stability during pulse train
- Laser pulse energy



#### Requirements:

Fast electronics working at least 1MHz (repetition rate of laser pulses)





#### Streak Camera



#### working principle

- Electron bunches with a similar temporal distribution are generated in a photo-cathode by a photon pulse
- electrons get accelerated onto fluorescence screen
- electrons get deflected by a fast time varying high voltage
- the flourescence screen translates electrons back to photons which can be detected

Laser pulse length can be measured down to a limit of about 0.5 ps.



# **Measurements and Shifts**





Position instability about 3 µm at a total laser pulse width of 1mm. (IR)



IR transversal





### **Measurements Jan 2013 [FWHM]**

• short pulse without stretcher:

$$\sigma = 1.3 \pm 0.5 \text{ ps}$$

short pulse with stretcher:

$$\sigma = 2.4 \pm 0.5 \text{ ps}$$





#### **Sep 2012**



# Jan 2013







$$\sigma_C = 3.5\%$$





| parameters                          | 09.01.13 | 11.01.13 |
|-------------------------------------|----------|----------|
| injector laser pulse duration (rms) | 1.0 ps   | 1.0 ps   |
| bunch chage                         | 35 pC    | 80 pC    |
| bunch duration (rms) [LOLA]         | 35 fs    | 78 fs    |
| wavelength                          | 13.5 nm  | 13 nm    |
| number of modes in FEL pulse        | unknown  | ~ 5.7    |
| FEL pulse duration (rms)            | unknown  | ~ 50 fs  |
| compression factor                  | ~70      | ~30      |
| SASE energy                         | 5 μͿ     | 25 μͿ    |
| SASE power                          | unknown  | ~ 0.5 GW |
| SASE bandwidth                      | unknown  | 0.34 %   |

Improved SASE stability compared to short pulse runs with standard injector laser due to shorter compression factors and thus more stable electron bunch length and form.



# **Summary & Goals**

- laser beamline with frequency conversion, stretching, transversal pulse shaping has been built and integrated into the control system
- after two shifts in January first SASE was generated with new injectorlaser
- first laser diagnostics have been built to characterise the laser

#### Goals

Enable routine operation with new short pulse laser this year:

- full control system integration has to be done (laser controls)
- characterise laser with diagnostics
- measure pulse length and emittance for different transversal laser profiles

# Commissioning and Characterisation of the Photo-Injector Laser for Single-Spike Operation at FLASH



#### Thank you for your attention!

- [1] Marc Hänel, Experimental Investigations on the Influence of the Photocathode Laser Pulse Parameters on the Electron Bunch Quality in an RF Photoelectron Source, Dissertation, 2010
- [2] W. E. Spicer, Photoemissive, Photoconductive, and Optical Absorption Studies of Alkali-Antimony Compounds, Phys. Rev. 112, 114-122, 1958
- [3] R. A. Powell et al., Photoemission studies of Cesium Telluride, Phys. Rev. B 8, 3987-3995, 1973
- [4] C. Limborg-Deprey, P.R. Bolton, Optimum electron distributions or space charge dominated beams in photoinjectors, NIM A, 557, 106-116, 2006
- [5] Juliane Rönsch, Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF electron source for the European X-FEL, Dissertation, 2009
- [6] P. Schmüser, M. Dohlus und J. Rossbach, Ultraviolet and Soft X-Ray Free-Electron Lasers, Springer-Velrag Berlin Heidelberg, 2008
- [7] P. Piot et al, Photoinjectors R&D for Future Light Sources & Linear Colliders, Fermilab Conference, 06-305
- [8] Feng Zhou et al, Impact of the laser spatial distribution on the LCLS photocathode gun operation, PRST-AB 15, 090701, 2012
- [9] M. Krasilnikov et al, Beam Based Monitoring of the RF Photo Gun Stability at PITZ