

Measurements of Complex Structures' RF Properties and their Simulation by means of Concatenation Techniques

Thomas Flisgen

Joint DESY and University of Hamburg Accelerator Physics Seminar DESY, Hamburg, Germany, 29th of January 2013

Outline

- Short introduction and motivation
- Simulation of S-parameters using coupling methods
- Measurements of S-parameters
- Comparison of simulation and measurement
- Improvement of coupling method
- Validation results
- Conclusions

Part II

Parti

Part I

Introduction: FLASH and the 3rd Harmonic Module ACC39

<u>Free electron LASer Hamburg</u>

- Superconducting linear accelerator with free electron laser based on SASE principle
- FLASH generates ultra-short X-ray laser pulses with variable wavelength to observe fast reactions of tiny structures
- Test device for future light sources like X-FEL as well as user machine available for experiments with the generated light

Source: http://flash.desy.de/

3rd Harmonic Module ACC39

Source: http://flash.desy.de/

- ACC39 compensates the non-linear interaction of bunch and accelerating RF fields in 1.3 GHz module (ACC1)
- ACC39 consists of four superconducting cavities operating at 3.9 GHz which is in fact three times the frequency of ACC1
- In combination with the magnetic chicanes ACC39 enables higher beam currents needed for the SASE process

Motivation for Investigation of S-Parameters

Motivation for Investigation of S-Parameters

- After modeling ACC39 with RF CAD tools based on technical drawings we have to ensure that the generated computer model reflects the physical properties of ACC39
- S-parameters allow for model validation because we can measure them at FLASH and we are able to compute them using FIT or FEM codes

Simulation of S-Parameters

String of Cavities in ACC39 @ FLASH Beamline

Cut off Frequencies of beam pipes:

1. TE11	Pol. 1	fco = 4.3920 GHz
2. TE11	Pol. 2	fco = 4.3920 GHz
3. TM01		fco = 5.7371 GHz
4. TE21	Pol. 1	fco = 7.2858 GHz
5. TE21	Pol. 2	fco = 7.2858 GHz
6. TE01		fco = 9.1412 GHz
7. TM11	Pol. 1	fco = 9.1412 GHz
8. TM11	Pol. 2	fco = 9.1412 GHz
9. TE31	Pol. 1	fco = 10.022 GHz
10.TE31	Pol. 2	fco = 10.022 GHz

* Picture courtesy E. Vogel et al.: "Status of the 3rd harmonic systems for FLASH and XFEL in summer 2008", Proc. LINAC 2008.

** I. R. R. Shinton, N. Juntong, R. M. Jones "Modal Dictionary of Cavity Modes for the Third Harmonic XFEL/FLASH Cavities", DESY note: DESY 12-053.

String of Cavities in ACC39 @ FLASH Beamline

* Picture courtesy E. Vogel et al.: "Status of the 3rd harmonic systems for FLASH and XFEL in summer 2008", Proc. LINAC 2008.

** I. R. R. Shinton, N. Juntong, R. M. Jones "Modal Dictionary of Cavity Modes for the Third Harmonic XFEL/FLASH Cavities", DESY note: DESY 12-053.

String of Cavities in ACC39 @ FLASH Beamline

L = 2329.6 mm

29.01.2013 T. Flisgen

UNIVERSITÄT ROSTOCK

Approach to determine S-Parameters of large/long Structures: <u>Coupled</u> <u>S</u>-Parameter <u>Calculations</u>*

* H.-W. Glock, K. Rothemund, U. van Rienen: "CSC - A System for Coupled S-Parameter Calculations", TESLA-Report 2001-25

CSC Workflow

Some further advantages:

- properties of equal segments need to be computed only once
- symmetry of segments can be employed to reduce computation costs
- suitable to perform parameter studies

* Picture courtesy E. Vogel et al.: "Status of the 3rd harmonic systems for FLASH and XFEL in summer 2008", Proc. LINAC 2008.

Details of ACC39 S-Parameter Simulation

CSC Device	Number of Meshcells	Duration of Computation*
Cavity	12,666,312	56 h 21 min
HOM2Leg	5,873,684	11 h 34 min
HOM2LegIC	12,999,168	15 h 53 min
HOM1Leg	5,482,620	17 h 13 min
HOM1LegIC	12,751,200	22 h 58 min
Bellow	3,413,800	6 h 22 min

*S-Parameter computed in the frequency interval from 3.5 GHz to 8 GHz sampled with $\Delta f=0.45$ MHz (10001 frequency samples) using CST's Resonant Fast S-Parameter Module

	Considered	pipe	modes fo	or expansion:
--	------------	------	----------	---------------

Hz
Hz
-

Measurement of S-Parameters*

*performed by N. Baboi (DESY), T. Flisgen and H.-W. Glock (Universität Rostock), I. Shinton (formerly University of Manchester/Cockcroft Institute now Elekta), Pei Zhang (formerly University of Manchester/DESY now CERN)

29.01.2013 T. Flisgen UNIVERSITÄT ROSTOCK

Measurement Setup

Figure courtesy of E. Vogel

T. Flisgen

- 28 transmission and 8 reflection spectra measured
- interval from 3.5 GHz to 8 GHz sampled with Δf =10kHz (450001 frequency samples) to capture high Q peaks

Laptop with LabView to control NWA

R&S ZVA8 NWA

One port M-O-S Calibration of Cables*

*Direct measurement of cable transmission was not possible due to fixed installation of cables

Measurements (total sweep time T \approx 4 d) result $\mathbf{S}_{ACC39,Meas} \in \mathbb{C}^{8 \times 8}$ and eight matrices $\mathbf{S}_{Cable,Meas} \in \mathbb{C}^{2 \times 2}$

Comparison between Measurement and Simulation

Example I: Transmission via Cavity 2 (Fund. Monopole PB)

Simulation • Measurement

Closely spaced peaks could belong to degenerated modes, whose resonant frequency slightly differs due to the roational symmetry breaking couplers.

Part II

Back to Theory and Simulations: A Closer Inspection on Input Data Needed for the CSC scheme

Example: Simulated Transmission HOM Coupler

29.01.2013 T. Flisgen

UNIVERSITÄT ROSTOCK

Example: Simulated Transmission HOM Coupler

Pole-Zero based Description

• Restriction on finite frequency interval:

$$s(\omega) = \sum_{k=1}^{N_{poles}} \frac{a_k}{j\omega - p_k} = c_0 \frac{\prod_{k=1}^{N_{poles}-1} (j\omega - \tilde{z}_k)}{\prod_{k=1}^{N_{poles}} (j\omega - z_k)}$$

Sampling leads to redundant information!

Redundancy in Description of HOM Coupler

Redundancy in Description of HOM Coupler

State Space Coupling* for Creation of Lumped Model of Complete Structure

*Inspired by M. Dohlus, R. Schuhmann, T. Weiland: "Calculation of frequency domain parameters using 3D eigensolutions", Int. J. Numer. Model. 12, 41-68 (1999) and H.-W. Glock, K. Rothemund, U. van Rienen: "CSC - A System for Coupled S-Parameter Calculations", TESLA-Report 2001-25

Description of Segments via Lumped Models

• Redundant-free description of segment's in an impedance formulation by:

- Respective matrices computed solving real eigenproblems for each segment*
- Upper equations are referred to as lumped equivalent model as they do not have spatial expanses or spatial derivatives.
- Segment's transfer function in freq. domain:

$$\mathbf{Z}_{r}(j\omega) = \mathbf{C}_{r}\left(j\omega\,\mathbf{I} - \mathbf{A}_{r}\right)^{-1}\mathbf{B}_{r} = \sum_{k=1}^{N_{poles}} \frac{\mathbf{M}_{k}}{j\omega - p_{k}}$$

*M. Dohlus, R. Schuhmann, T. Weiland: "Calculation of frequency domain parameters using 3D eigensolutions", Int. J. Numer. Model. 12, 41-68 (1999)

Demonstration Example for State Space Coupling

*transient system response available using \underline{O} rdinary \underline{D} ifferential \underline{E} quations (ODE) Solver

Validation Results

Validation using S-Parameters

Comparison State Space Coupling vs. Direct

Comparison State Space Coupling vs. Direct

Validation using External Q Factors

Comparison State Space Coupling vs. Direct

Validation using Transient System Responses

Comparison Direct vs. State Space Coupling

Conclusions

Conclusions

- Remarkable agreement between measurement and simulation, but by far not perfect due to a large variety of not considered effects
- State space coupling enables the creation of lumped equivalent models of complex structures.
- In comparision to CSC no redundant sampling of S-matrices.
- The lumped model directly allows for computation of S-Parameters, transient system responses, external quality factors and other secondary quantities.
- The validation example shows a good agreement between results obtained by direct and piecewise computations over a wide frequency range.

Part.

Part II