

29.01.2013 © 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK

Overview

- Introduction, Challenges, Motivation, Idea
- Simulation of interaction beam e-cloud
- Single bunch instability simulation
- Results for PETRA III
- Summary and conclusion

Introduction - Head – Tail instability due to e-clouds

Schematic of the single-bunch instability induced by electron cloud after some time in the storage ring.

Challenges

Fact: Presently no computational resources for a full 3D strong-strong simulation of the beam- e-cloud interaction over the time of a synchrotron period!!!

Tracking with the optics matrices + the influence of the collective effects!

The transverse kick on the bunch due to the e-cloud :

Lumped, on one or more points in the lattice applying a kick on the bunch

Motivation

- To estimate the e-cloud effect on the beam by numerical simulation
- Simulation fast and cheap but still to a certain extent reliable prediction of the effects

Idea

• Pre-computed wake - idea of K. Ohmi

Tracking with the pre-computed wake matrix

Interaction: beam - e-cloud (MOEVE PIC Tracking)

Momentum of the electrons along the bunch passage (symmetry)

After the interaction...

Vertical phase-space of the e-cloud after bunch passage (left), vertical momentum along the bunch length (right).

Interaction: beam - e-cloud with and w/o dipole field

Electron distribution after the interaction with the bunch w/o dipole field (left) and with dipole field (right).

Single bunch instability simulation

- Wake matrix by detailed beam e-cloud interaction simulations with MOEVE PIC Tracking - idea of K. Ohmi
- Tracking with "PEWKT" by K.Ohmi –Input: Wake Matrix with the transversal kick due to the e-cloud interaction

Dipole kick from the e-cloud (head-tail)

A particle at a longitudinal position z_j in the tail of the bunch receives a dipole kick $\Delta p_y(j,i)$ from the e-cloud perturbed by a preceding slice i $(z_i > z_j)$ with an off-set Δy_i .

Entries of the wake matrix W_1

Perform *M* MOEVE PIC Tracking simulations of the interaction where each of the slices i = 1, ..., M has an off-set at a time which is responsible for inducing a dipole kick $\Delta p_y(i, j)$ on the following j = i, ..., M slices $(z_i > z_j)$

The entries of the wake matrix:

Tracking of a single bunch with a wake matrix

• With the tracking program PEWKT[1] of K. Ohmi we track the bunch through the linear optics of the storage ring while at each turn the M slices of the bunch receive a kick according to the pre-computed wake matrix.

Main Assumptions:

- The kick on the slice j is a superposition of the kicks induced by all the slices $i=1,\ldots,j-1$ ahead of the slice j.
- The transverse kick scales linearly with the off-set Δy_i until $\Delta y \, \leq \, \sigma_y$

[1] K. Ohmi. Particle-in-cell simulation of beam-electron cloud interactions. In PAC, 2001, volume 3, pages 1895–1897, 2001.

Results for PETRA III

Aerial view of October 6, 2008 Photo: http://petra3-project.desy.de/buildings/photos/october_2008/aerial_views/index_eng.html

PETRA III - synchrotron machine running with positrons in a top up operation with I=100mA

Parameter	Symbol	PETRA III		
Circumference	L	2304 m		
Beam energy	E_b	6 GeV		
Length (rms)	σ_z	12 mm		
Emittance	ϵ_x	1nm		
	ϵ_y	0.01nm		
Synchrotron tune	ν_s	0.049		
Betatron tune	$\nu_{x(y)}$	36.13/30.29		
Radiation Damping	horizontal	19.75 ms		
	vertical	19.75 ms		
	longitudinal	9.84 ms		
Momentum	α	1.2010^{-4}		
compaction factor				
RF Frequency	RF	499.564 MHz		

Table 1: PETRA III machine parameters. Designed for 960 and 40 bunches with equidistant spacing of 8 and 192 ns.

Vertical tune spectra of each of the 640 bunches with 8ns spacing, measured on May 11, 2010[1]. The total beam current was 62mA. Courtesy of R.Wanzenberg.

Simulation of a single bunch stability for the bunch of the 480 x 1 run:

Filling scheme	Bunch positions (8 ns spacing) 1 3 5 7 16 ns	25	27	29	31 960
480 x 1	↑				

Starting vertical emittance: $\mathbf{\epsilon}_{v}$ =20 pm rad

Beam Current	Ι	100 mA
Beam Charge	Q	769 nC
Bunch Charge	Q_b	$1.6~\mathrm{nC}$
Positrons per Bunch	N_b	10^{10}
Mean β function	$eta_{x/y}$	15 m
Transverse	σ_x	122.47 $\mu \mathrm{m}$
beam size (rms)	σ_y	$17.321 \ \mu \mathrm{m}$

e-cloud:

•uniform distribution,

•density: $\boldsymbol{\rho}_e$ =1 10¹¹, 5 10¹¹, 2 10¹², 5 10¹² [N_e/m³]

•Beam pipe radius: 5mm length: 10mm

•Represented by unit charges

positron bunch:

•represented by 10⁶ macro-particles;

•Gaussian distribution;

•longitudinally spreads from $-3\sigma_z$ to $+3\sigma_z$

•virtually sliced in M = 40 slices*

The time step used for the interaction simulation is 1 ps.

* The thickness of the slices in the lab frame corresponds to the time which the electrons on the beam axis need to change their vertical position for one σ_{v}

Wake matrix computed by MOEVE-PIC TRACK

*computed by R.Wanzenberg accoding the expression from: K. Ohmi: Electron Cloud Effect in Damping Rings of Linear Colliders 31st ICFA Advanced Beam Dynamics Workshop on Electron-Cloud Effects "ECLOUD'04"

Summary and conclusion

- 3D computation of single-bunch induced electron-cloud wake fields
- Simulation of single bunch instabilities due to the interaction with the electron clouds by tracking with a 2D Wake-Function.
- Investigation of the stability for different beam and cloud parameters
- The tracking simulation using the pre-computed wake matrix for the given bunch was able to predict the instability.
- As in the measurements the simulation for e-cloud densities above threshold show also sidebands in the betatron tune spectra.
- The simulated emittance growth seems realistic, even more the emittance from the simulation with $\rho_e = 5 \cdot 10^{12} \text{ Ne/m}^3$ seems to match the measured long time emittance (~140 pm) from the run with 480 bunches.
- Although further validation of the procedure is needed it seems that such a simulation may also be used to numerically estimate the threshold e-cloud density.

Acknowledgment

We would like to thank K. Ohmi for letting us use his program and R. Wanzenberg for sharing his knowledge with us regarding e-cloud effects in the PETRAIII ring.