Improvements in Optics Measurement Resolution for the LHC.

Andy Langner

European Organization for Nuclear Research (CERN) & Universität Hamburg

Joint DESY and University of Hamburg Accelerator Physics Seminar, 19.11.13

Outline.

- Optics measurement improvements
- Beta-beat estimates at 7 TeV
- Improvements in correction techniques
- Summary / Outlook

Optics measurement.

Optics measurement.

- Oscillation will be excited on the beam (Kicker, AC Dipole)
- Turn-by-turn data from the BPMs is recorded
- → Harmonic analysis → phase advance of betatron oscillation
 - Phase advance of 3 BPMs can be used to derive optical parameters

$$eta_{\mathsf{BPM}\,1} \propto \cot(\Phi_{1,2}) - \cot(\Phi_{1,3})$$
 $eta_{\mathsf{BPM}\,2} \propto \cot(\Phi_{1,2}) + \cot(\Phi_{2,3})$
 $eta_{\mathsf{BPM}\,3} \propto \cot(\Phi_{2,3}) - \cot(\Phi_{1,3})$
 $eta_{\mathsf{BPM}\,3} \propto \cot(\Phi_{2,3}) - \cot(\Phi_{1,3})$
 $eta_{\mathsf{BPM}\,3} \propto \cot(\Phi_{2,3}) - \cot(\Phi_{1,3})$

Resolution depends on phase advances

Resolution dependency of the phase advances.

- Conditions on the phase advance for optimal resolution:
 - Phase advance from probed BPM to the two other BPMs should be close to $(45^\circ + n \cdot 90^\circ, n \in \mathbb{N})$
 - Avoid phase advances of $(n \cdot 180^{\circ}, n \in \mathbb{N})$ in between BPM pairs

Implementation of the current algorithm.

▲ Beam Position Monitors

- Algorithm goes step by step through all available BPMs
- Every set of three neighboring BPMs is used to calculate the optical functions at the three BPM positions
- → For every BPM position the optical functions are calculated 3 times and averaged

Situation in the arcs.

- In general the phase advance between BPM pairs is at about 45°
- This is the optimum for the case that the probed BPM is in between the other two
- For the case that the probed BPM is left or right to the other two BPMs the phase advances are at about 45° and 90°
- → In the later case a phase advance of 45° and 135° with respect to the probed BPM would be better

Improvements for the arc.

∇ current algorithm
 O different BPM choice

	$\Psi_{1,3}$			
BPM	Current	Skip BPM for		
15R4	Algorithm	135° in edge		
β_x (m)	31.1	30.7		
Error propagation from $\Delta\Phi$				
$\sigma_{eta_x,1}$ (m)	0.21	0.17		
Standard deviation (3 BPM sets)				
$\sigma_{eta_x,2}$ (m)	0.22	0.43		
β_y (m)	168.85	168.86		
Error propagation from $\Delta\Phi$				
$\sigma_{eta_{\mathrm{y}},1}$ (m)	1.69	1.03		
Standard deviation (3 BPM sets)				
$\sigma_{eta_{\mathrm{v}},2}$ (m)	1.93	2.04		

- Propagated error from phase decreases, but standard deviation increases
- Model uncertainties contribute more if further away BPM are used

Situation in the IRs.

- In the interaction regions (IRs) the phase advances between BPM pairs differ from 45°
- In many cases smaller phase advances, in some cases even just a few degree
- Sketch shows phase advances for BPMs close to IP4

Improvements for IR4.

• Choice of BPMs in old algorithm (∇ in right plot)

Better choice of BPMs (○ in right plot)

Improvements for IR4.

BPMWA	Current	Optimized		
		•		
B5R4	Algorithm	BPM sets		
β_x (m)	183.1	190.2		
Error propagation from $\Delta\Phi$				
$\sigma_1\beta_x$ (m)	23.7	2.1		
Standard deviation (3 BPM sets)				
$\sigma_2\beta_x$ (m)	2.4	0.2		
$\beta_{\rm y}$ (m)	174.0	167.1		
Error propagation from $\Delta\Phi$				
$\sigma_1 \beta_y$ (m)	21.5	1.9		
Standard deviation (3 BPM sets)				
$\sigma_2\beta_y$ (m)	4.6	0.2		

BPMYB	Current	Optimized		
B5R4	Algorithm	BPM sets		
β_x (m)	197.6	191.8		
Error propagation from $\Delta\Phi$				
$\sigma_1 \beta_x$ (m)	15.6	3.0		
Standard deviation (3 BPM sets)				
$\sigma_2\beta_x$ (m)	1.7	0.7		
β_y (m)	405.1	407.7		
Error propagation from $\Delta\Phi$				
$\sigma_1 \beta_y$ (m)	32.9	4.6		
Standard deviation (3 BPM sets)				
$\sigma_2\beta_y$ (m)	9.1	3.3		

Improvement of one order of magnitude on the error bar!

Implementation of a new algorithm.

Old algorithm

▲: probed BPMs

▲: used BPMs

▲: unused BPMs

- Old algorithm
 - 3 BPM sets of the nearest neighbors per BPM position
 - Final optical functions are the average from the 3 BPM sets
- New algorithm
 - One additional BPM right and left of the probed BPM are used
 - → 15 combinations of BPM sets
 - The 3 BPM sets which feature the lowest errors are chosen and averaged

Including dipole b2 errors in the model.

- Higher effect at lower energy

10000

15000

Longitudinal location (m)

20000

0.10 0.05 0.00

-0.05-0.100

25000

Errors bars of measured betas.

- Averaged $\Delta \beta$
- Errors larger than 200% were removed
- b2 dipole errors increase precision of the measurement

Two contributions to the error bar.

- New algorithm improves significantly errors propagated from $\Delta\Phi$
- Standard deviation is more sensitive to the model
 - → improves when using b2 errors

Error bars in arcs and IRs.

- Largest errors are in general in the IRs
- Here the algorithm shows the strongest improvements
- Errors in the arcs already on a low level
- Can be slightly improved with the new algorithm in combination with b2 errors

Beta-beat estimates.

Missing MQT magnets.

- MQT 18.L1 is broken
- The disabled magnet can be compensated by increasing the strength of the other MQTs in this arc
- Switching off 4 MQTs is a favored solution for keeping low beta-beat and low dispersion-beat

Injection optics at 7 TeV - Missing MQT magnets.

 Global beta-beat is negligible if 4 MQTs are switched off

 Only around these MQT positions a larger beta-beat is observed

→ 2% peak beta-beat

ATS 20cm optics at 7 TeV - Missing MQT magnets.

- Global beta-beat is negligible if 4 MQTs are switched off
- Larger beta-beat in arc81

→ 4% peak beta-beat

Fringe fields of triplet magnets.

- Hard edge model of a magnet does not take fringe fields into account
- Measured values of gradient versus longitudinal coordinate for MQXF magnets
- Applied on MQXA and MQXB by scaling with aperture (D)
- Fringe field fall off described by Enge function:

$$F(z) = \frac{1}{1 + exp(a_1 + a_2(z/D) + \dots + a_5(z/D)^6)}$$

Fringe fields of triplet magnets.

- 0.5m on each end of the magnet is modeled using the fringe field fit
- 50 slices of 10cm length on both ends
- the mid part of the magnet has the same k value as before but length is changed in order to achieve the same overall k · L

Fringe fields of triplet magnets.

 Fringe field was applied to triplets in IR1 and IR5

→ 1% beta-beat

Hysteresis at 7 TeV.

- FiDeL model describes ramp up branch
- This causes an error for magnets which are ramped down, e.g. during the squeeze
- 30 magnets from the MQY, MQM and MQML family

→ 0.5% peak beta-beat

Saturation and hysteresis at 7 TeV (squeeze).

- Saturation uncertainties are treated statistically
- Simulation of 60 cases with random gradient errors following a Gaussian distribution within the saturation uncertainty
- Considered magnet types: MQ, MQY, MQM, MQML, MQMC and MQW

→ 1% peak beta-beat

Saturation and hysteresis at 7 TeV (squeeze).

- Saturation uncertainty of triplet magnets MQXA and MQXB is now added to the simulation
- Strongest contribution to the beta-beat from these magnets

ightarrow pprox 50% peak beta-beat in worst case scenarios

Summary from beta-beat estimates.

- Missing MQT magnets
 - → 2-4% peak beta-beat (in arc81, negligible elsewhere)
- Fringe fields of triplets
 - → 1% peak beta-beat
- Hysteresis
 - → 0.5% peak beta-beat
- Saturation (w/o triplets)
 - → 1% peak beta-beat
- Saturation (with triplets)
 - $ightarrow \approx$ 50% peak beta-beat

Improvements of correction techniques.

Segment-by-Segment.

- Transport of optical functions from a BPM position
- Technique for investigating local corrections
- Calculation of optical functions at specific elements
- Uses measured optical function at starting point of simulation

Improvements in measured beta-function accuracy.

- New algorithm for beta-function measurement
- Accuracy has been increased especially in the IRs
- Increased resolution for correction technique

Illustration of Segment-by-Segment.

- Errors in the real machine cause deviation of the phase advance
- Searching for magnet errors that can reproduce the measured deviation
- Correcting optics with this magnet errors

Systematic errors.

- Errors on the measured β- and α-functions propagate to an error of the phase advance → has not taken into account before
- Error on phase advance has minima which indicates higher sensitivity at specific locations
- ightarrow Local corrections might be better constrained by using 2 segments with starting location separated by $angle 90^\circ$

Systematic errors.

- optics measurement simulated
- 0.5% error on Q5.L1 → segment-bysegment run
- two starting positions separated by $\approx 90^{\circ}$ phase advance

Impact of fringe fields on Segment-by-Segment.

- Fringe fields in the triplet cause also a phase advance
- Should be implemented in Segmentby-Segment for higher precision

Offline correction technique.

- Monte-Carlo Approach to fit optics to measured constraints
- Vary quadrupole strengths Δk \rightarrow and long. positions Δs

- Variation of simulated phase advances $\Delta \Phi_{i,Sim}$
 - Minimize $\chi^2 = \sum_i \left(\frac{\Delta \Phi_{i,Meas} \Delta \Phi_{i,Sim}}{\sigma(\Delta \Phi_i)} \right)^2$

Offline correction technique.

- Flexible technique
 → can be
 combined with
 other
 measurements
 (k-modulation)
- This method was tested in IR1 in combination with constraints from ALFA detector measurements

Summary.

- Improved algorithm for β -function calculation studied
 - Significant improvements on the error bars
 - Precise knowledge of the model (b2 errors) crucial
- beta-function measured with higher accuracy
 - → Higher precision of Segment-by-Segment
- Code will be extended to use different start location for the simulation
 - → Sensitivity for different error sources
- Fringe field impact will be included in the code
- Monte-Carlo approach for offline corrections
- More sophisticated error treatment \rightarrow Propagation of β -function to specific elements will benefit from these improvements

Thank you for your attention.