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Outline.

• Optics measurement improvements

• Beta-beat estimates at 7 TeV

• Improvements in correction techniques

• Summary / Outlook
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Optics measurement.
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Optics measurement.

• Oscillation will be excited on the beam (Kicker, AC Dipole)

• Turn-by-turn data from the BPMs is recorded

→ Harmonic analysis → phase advance of betatron oscillation

• Phase advance of 3 BPMs can be used to derive optical parameters

βBPM 1 ∝ cot(Φ1,2)− cot(Φ1,3)

βBPM 2 ∝ cot(Φ1,2) + cot(Φ2,3)

βBPM 3 ∝ cot(Φ2,3)− cot(Φ1,3)

• Resolution depends on phase advances
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Resolution dependency of the phase advances.

• Conditions on the phase advance for optimal resolution:

• Phase advance from probed BPM to the two other BPMs should be close to
(45◦ + n · 90◦, n ∈ N)

• Avoid phase advances of (n · 180◦, n ∈ N) in between BPM pairs

Φ1,2 Φ1,3

−Φ1,3 Φ1,2
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Implementation of the current algorithm.

Beam Position Monitors

Step 1

Step 2

Step 3

• Algorithm goes step by step through all available BPMs

• Every set of three neighboring BPMs is used to calculate the optical
functions at the three BPM positions

→ For every BPM position the optical functions are calculated 3 times and
averaged
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Situation in the arcs.

BPMs

• In general the phase advance between BPM pairs is at about 45◦

• This is the optimum for the case that the probed BPM is in between the
other two

• For the case that the probed BPM is left or right to the other two BPMs
the phase advances are at about 45◦ and 90◦

→ In the later case a phase advance of 45◦ and 135◦ with respect to the
probed BPM would be better
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Improvements for the arc.

O current algorithm
© different BPM choice

BPM Current Skip BPM for
15R4 Algorithm 135◦ in edge
βx (m) 31.1 30.7

Error propagation from ∆Φ
σβx,1 (m) 0.21 0.17

Standard deviation (3 BPM sets)
σβx,2 (m) 0.22 0.43

βy (m) 168.85 168.86
Error propagation from ∆Φ

σβy,1 (m) 1.69 1.03
Standard deviation (3 BPM sets)

σβy,2 (m) 1.93 2.04
• Propagated error from phase decreases, but standard deviation

increases

• Model uncertainties contribute more if further away BPM are used
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Situation in the IRs.

• In the interaction regions (IRs) the phase advances between BPM pairs
differ from 45◦

• In many cases smaller phase advances, in some cases even just a few
degree

• Sketch shows phase advances for BPMs close to IP4
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Improvements for IR4.

• Choice of BPMs in old algorithm (O in right plot)
∆Φx

∆Φy
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: probed BPMs : used BPMs : unused BPMs

• Better choice of BPMs (© in right plot)
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Improvements for IR4.
BPMWA Current Optimized

B5R4 Algorithm BPM sets
βx (m) 183.1 190.2

Error propagation from ∆Φ
σ1βx (m) 23.7 2.1

Standard deviation (3 BPM sets)
σ2βx (m) 2.4 0.2

βy (m) 174.0 167.1

Error propagation from ∆Φ
σ1βy (m) 21.5 1.9

Standard deviation (3 BPM sets)
σ2βy (m) 4.6 0.2

BPMYB Current Optimized
B5R4 Algorithm BPM sets
βx (m) 197.6 191.8

Error propagation from ∆Φ
σ1βx (m) 15.6 3.0

Standard deviation (3 BPM sets)
σ2βx (m) 1.7 0.7

βy (m) 405.1 407.7

Error propagation from ∆Φ
σ1βy (m) 32.9 4.6

Standard deviation (3 BPM sets)
σ2βy (m) 9.1 3.3

Improvement of one order of magnitude on the error bar!
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Implementation of a new algorithm.
OlOld algorithm

: probed BPMs
: used BPMs
: unused BPMs

• Old algorithm

• 3 BPM sets of the nearest neighbors per BPM position

• Final optical functions are the average from the 3 BPM
sets

• New algorithm

• One additional BPM right and left of the probed BPM are
used

→ 15 combinations of BPM sets

→ The 3 BPM sets which feature the lowest errors are
chosen and averaged

New algorithm
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Including dipole b2 errors in the model.
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• More precise model

• Better accuracy for the beta
calculation expected

• Higher effect at lower energy
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Errors bars of measured betas.
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• Averaged ∆β

• Errors larger than
200% were
removed

• b2 dipole errors
increase precision
of the
measurement
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Two contributions to the error bar.
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• New algorithm improves
significantly errors
propagated from ∆Φ

• Standard deviation is
more sensitive to the
model
→ improves when
using b2 errors

A. Langner (CERN) Improvements in Optics Measurement Resolution Joint DESY and UHH, 19.11.13 15 / 38



Error bars in arcs and IRs.
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• Largest errors are in
general in the IRs

• Here the algorithm
shows the strongest
improvements

• Errors in the arcs
already on a low level

• Can be slightly
improved with the new
algorithm in
combination with b2
errors
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Beta-beat estimates.
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Missing MQT magnets.

• MQT 18.L1 is broken

• The disabled magnet can be compensated by increasing the strength of
the other MQTs in this arc

• Switching off 4 MQTs is a favored solution for keeping low beta-beat and
low dispersion-beat

14 16 18 20

Dispersion-beat supression

Beta-beat supression
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Injection optics at 7 TeV - Missing MQT magnets.

• Global
beta-beat is
negligible if 4
MQTs are
switched off

• Only around
these MQT
positions a
larger
beta-beat is
observed
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→ 2% peak beta-beat
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ATS 20cm optics at 7 TeV - Missing MQT magnets.

• Global
beta-beat is
negligible if 4
MQTs are
switched off

• Larger
beta-beat in
arc81
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→ 4% peak beta-beat
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Fringe fields of triplet magnets.

• Hard edge model
of a magnet does
not take fringe
fields into account

• Measured values
of gradient versus
longitudinal
coordinate for
MQXF magnets

• Applied on MQXA
and MQXB by
scaling with
aperture (D)

• Fringe field fall off
described by Enge
function:
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Fringe fields of triplet magnets.
• 0.5m on each end of the magnet is modeled using the fringe field fit

• 50 slices of 10cm length on both ends

• the mid part of the magnet has the same k value as before but length is
changed in order to achieve the same overall k · L

2 3 4 5 6 7 8

s (m)

K
1

sliced MQXA magnet
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Fringe fields of triplet magnets.

• Fringe field
was applied to
triplets in IR1
and IR5
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→ 1% beta-beat
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Hysteresis at 7 TeV.

• FiDeL model
describes ramp up
branch

• This causes an
error for magnets
which are ramped
down, e.g. during
the squeeze

• 30 magnets from
the MQY, MQM
and MQML family
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→ 0.5% peak beta-beat
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Saturation and hysteresis at 7 TeV (squeeze).
• Saturation

uncertainties are
treated statistically

• Simulation of 60 cases
with random gradient
errors following a
Gaussian distribution
within the saturation
uncertainty

• Considered magnet
types: MQ, MQY,
MQM, MQML, MQMC
and MQW
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→ 1% peak beta-beat
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Saturation and hysteresis at 7 TeV (squeeze).

• Saturation uncertainty
of triplet magnets
MQXA and MQXB is
now added to the
simulation

• Strongest contribution
to the beta-beat from
these magnets
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→ ≈ 50% peak beta-beat in worst case scenarios
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Summary from beta-beat estimates.

• Missing MQT magnets
→ 2-4% peak beta-beat (in arc81, negligible elsewhere)

• Fringe fields of triplets
→ 1% peak beta-beat

• Hysteresis
→ 0.5% peak beta-beat

• Saturation (w/o triplets)
→ 1% peak beta-beat

• Saturation (with triplets)
→ ≈ 50% peak beta-beat
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Improvements of correction
techniques.
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Segment-by-Segment.

Beam Position Monitor

Quadrupole(
~β(s1)
~α(s1)

) (
~β
~α

) (
~β(s2)
~α(s2)

)
meas. sim. meas.

Arb. element

MAD-X

• Transport of optical functions from a BPM position

• Technique for investigating local corrections

• Calculation of optical functions at specific elements

• Uses measured optical function at starting point of simulation
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Improvements in measured beta-function accuracy.

• New algorithm for
beta-function
measurement

• Accuracy has
been increased
especially in the
IRs

→ Increased
resolution for
correction
technique
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Illustration of Segment-by-Segment.

• Errors in the real
machine cause
deviation of the
phase advance

• Searching for
magnet errors that
can reproduce the
measured
deviation

→ Correcting optics
with this magnet
errors
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Systematic errors.

• Errors on the measured β- and
α-functions propagate to an error
of the phase advance → has not
taken into account before

• Error on phase advance has
minima which indicates higher
sensitivity at specific locations

→ Local corrections might be better
constrained by using 2 segments
with starting location separated by
≈ 90◦
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Systematic errors.

• optics
measurement
simulated

• 0.5% error on
Q5.L1 →
segment-by-
segment
run

• two starting
positions
separated by
≈ 90◦ phase
advance
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Impact of fringe fields on Segment-by-Segment.

• Fringe fields in
the triplet
cause also a
phase
advance

• Should be
implemented
in Segment-
by-Segment
for higher
precision
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Offline correction technique.

IP

Beam Position Monitors

Segment-by-Segment Simulation

Quadrupole ∆Φi

• Monte-Carlo Approach to fit optics to measured constraints

• Vary quadrupole strengths ∆k and long. positions ∆s

→ Variation of simulated phase advances ∆Φi,Sim

• Minimize χ2 =
∑

i

(
∆Φi,Meas −∆Φi,Sim

σ(∆Φi)

)2
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Offline correction technique.

• Flexible technique
→ can be
combined with
other
measurements
(k-modulation)

• This method was
tested in IR1 in
combination with
constraints from
ALFA detector
measurements
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Summary.
• Improved algorithm for β-function calculation studied

• Significant improvements on the error bars

• Precise knowledge of the model (b2 errors) crucial

• beta-function measured with higher accuracy
→ Higher precision of Segment-by-Segment

• Code will be extended to use different start location for the simulation
→ Sensitivity for different error sources

• Fringe field impact will be included in the code

• Monte-Carlo approach for offline corrections

• More sophisticated error treatment → Propagation of β-function to
specific elements will benefit from these improvements
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Thank you for your attention.

A. Langner (CERN) Improvements in Optics Measurement Resolution Joint DESY and UHH, 19.11.13 38 / 38


