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LHC Upgrade Programs 

• p-p and p-pb82+ collider. 

• 7 TeV/beam. 
• Luminosity: 1034cm−2s−1. 

Today 

• Peak luminosity (virtual) > 𝟐 ⋅ 𝟏𝟎𝟑𝟓𝐜𝐦−𝟐𝐬−𝟏. 
• Larger bunch intensity. 
• Smaller beam size at interaction point (𝛽∗). 

• Requires luminosity leveling to limit average pile-up to ≈140. 
              O. Brüning and F. Zimmermann, IPAC12, MOPPC005 

• 27 km long. 
• e+ – e- collider. 
• 105 GeV/beam. LHeC: hadron-e- collider. 

LEP3: e+ – e- collider, >120 GeV/beam. 

HE-LHC: 20T dipole magnets, 16.5 TeV/beam. 
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Geometric Luminosity Loss 

 

• The crossing angle (to mitigate long-
range beam-beam) leads to a 
geometric luminosity reduction. 

• Crab cavities have a time dependent 
transverse deflection and can restore 
the geometric luminosity loss (and 
level the luminosity). 

𝜣 ∝
𝟏

𝜷∗
 

W. Herr 

I. Ben-Zvi et al., HHH-2008 
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Crab Cavity Status 

• Crab cavities are used in KEKB since 2007. 

• Enormous advance in compact crab cavity design. 
 Three designs, 400 MHz, 3 MV kick, r < 150 mm. 

 First prototypes are constructed. 

 

 

 

 

 

• Still several main challanges ahead: 
  RF noise, impedance, machine protection, … 

KEKB crab cavity. 

ODU/JLAB/SLAC BNL ULANC 
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LHC Machine Protection 

• Main challenge: Beam energy of 362MJ (HL-LHC: up to 700MJ) 
 Damage level (sensitive equipment): ≈10kJ     R. Schmidt, Pac07 

 Quench limit of superconducting elements: few mJ/cm³ 

• Over 200 protection systems can request a beam dump 
 4000 BLMs (40µs resolution), power converter, software interlock system, etc. 

Up to ≈3 turns between 
failure detection and 
beam dump. 
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KEK Crab Cavity Quench  

• Full decay of crab cavity in ≈100µs (≈1 turn). 

• Oscillations of Crab Cavity phase (up to 50° in 50µs). 

100µs 

K. Nakanishi et al., 
IPAC’10, WEPEC022. 
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Analytical Approach 

• Transverse deflection by crab cavity: 

 𝑥𝑐𝑐
′ 𝑧 = −

𝑞⋅𝑉

𝐸
⋅ 𝑠𝑖𝑛 Φ +

𝜔⋅𝑧

𝑐
 

• Optimal voltage to compensate crossing angle: 

  𝑉0 =
𝑐⋅𝐸⋅tan

Θ

2

𝑞⋅𝜔⋅ 𝛽∗𝛽𝑢⋅sin Δ𝜑 ⋅𝑛𝑐𝑐
 

• Maximal transverse displacement by CC: 








 









c
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n

czx

ccIPxx
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2

upgrade optics nominal optics 

Maximal displacement with 𝑠𝑖𝑛 Φ +
𝜔⋅𝑧

𝑐
= 1       𝑥 cc ≈ 4σx 1σx 

For z = 7.55cm (= 1∙σz):                         𝑥 cc z = 7.55cm ≈ 2.36σx 0.60σx 

= 4.05 (upgrade optics, 𝛽∗ = 15𝑐𝑚, ncc=1)      T. Baer et al., IPAC’11 

σx  = horizontal beam size 
q  = particle charge 
E  = particle Energy  (7 TeV) 
V = voltage of crab cavity 
Φ = phase of crab cavity 
Ѳ = full crossing angle  (590/285µrad) 
φ = phase advance CC ->IP  (≈ π/2) 
ω = angular frequency of CC   

(2 π∙400 MHz) 
z = longitudinal position of particle 
c = speed of light 
𝑛𝑐𝑐 = number of independent CCs per 

beam on either side of IP. 
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Failure Scenarios 

 

Slow (external) failures 
• Power cut 

• Thermal problems 

• Mechanical changes (tuner problem) 

Fast external failures 
• Control-logics failure 

• Operational failure 

• Equipment failure 

• … 

 

Timescale determined by Qext. Qext slow 

slow 

Internal failures 
• Arc in coupler 

• Multipacting 

• Cavity quench 

 

Timescales < 1 turn possible. 

J. Tuckmantel, „Failure Scenarios and Mitigation“, LHC-CC10 
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Failure Simulations 

• MAD-X tracking studies (thintrack module) 

• Crab cavity local scheme IP5, beam 1. 

• No splitting of crab cavity kicks. 

• Optics:  
• SLHCV3.1b, β* = 0.15m (IP1/5), β* = 10.0m (IP2/8), Ѳ = 590µrad. 

• Nominal optics, β* = 0.55m (IP1/5), β* = 10.0m (IP2/8), Ѳ = 285µrad. 

• Instantaneous failure of single crab cavity, constant (e.g. at V=0) 
afterwards. 

• Tracking for ≈20 turns. 
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Voltage Failure 

• Instantaneous change of voltage of CC.R5.B1 to zero.  

• Beam losses mainly at primary collimator (TCP.C6L7.B1). 

  

Upgrade optics SLHCV3.0 4444_thin, 
IP1/5: β* = 0.15m, Θ=580μrad, CC Local 
scheme IP5, 400/10,000 particles, 
Gaussian particle distribution 
𝜖𝑛 = 3.75𝜇𝑚 ⋅ 𝑟𝑎𝑑., 𝜎𝑧 = 7.55𝑐𝑚. 

IR7 
collimation 

IR1 
ATLAS 

IR3 
collimation 

IR5 
CMS 

Failure of 
compensating CC 

losses 
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Static Failure of CC.R5.B1 

 Bunchshape at primary collimator TCP.C6L7.B1 directly after failure. 

𝟓. 𝟕𝛔 
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Static Failure of CC.R5.B1 

 Bunchshape at primary collimator TCP.C6L7.B1, 1 turn after failure. 

𝟓. 𝟕𝛔 
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Static Failure of CC.R5.B1 

 Bunchshape at primary collimator TCP.C6L7.B1, 2 turns after failure. 

𝟓. 𝟕𝛔 
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Maximal Displacement 

To isolate effect of CC failure and to be independent of particle 
distribution: 

• Maximal displacement:    

          𝒙 = 𝒙𝜷
𝟐 + 𝜶 ⋅ 𝒙𝜷 + 𝜷 ⋅ 𝒙𝜷

′ 𝟐
 

  

   with    𝑥𝛽 = 𝑥 − 𝐷𝑥 ∗
𝛥𝑝

𝑝
, 𝑥𝛽

′ = 𝑥′ − 𝐷𝑝𝑥 ∗
𝛥𝑝

𝑝
. 

 constant around LHC (apart from IRs). 

• Initial consitions: 
  x, x’, y, y’, dp/p = 0. 

• Displacement of up to 5σ (ncc=1). 
 up to 1.7σ with ncc=3. 
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Failure Dynamics 
 

Fast external failures (e.g. control/operational failure): 

• Time constant of crab cavity failures: 

 With Qext = 1‘250‘000, f = 400MHz -> 𝝉𝟎 =
𝑸𝒆𝒙𝒕

𝝅⋅𝒇
≈ 𝟏𝒎𝒔 (≈11 turns). 

• Maximal voltage change per turn: 
Δ𝑉

𝑉
= 2 − 2exp −

89𝜇𝑠

1𝑚𝑠
= 𝟏𝟕%. 

• Phase change in first turn: 𝑎𝑟𝑐𝑡𝑎𝑛
Δ𝑉

𝑉

1−
Δ𝑉

𝑉

= 𝟓. 𝟑°. 

 

 

 
Qext determines time constant 

of fast external failures. 

T. Baer et. al, „LHC Machine Protection Against Very Fast Crab Cavity Failures“, IPAC’11, 
J. Tuckmantel, CERN-ATS-Note-2011-002 TECH 
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Voltage Failure 

• Dynamic voltage change of CC.R5: 𝑉0 → −𝑉0. 
 𝑄𝑒𝑥𝑡 = 1′250′000. 

 Failure starts after turn 10. 

• Resulting maximal displacement in 5 turns 
with ncc=1: 

𝒙 = 𝟐. 𝟏𝝈𝒙 at 𝐳 = ±𝟐. 𝟒𝝈𝒛, 

• The (longitudinal) bunch center is not 
displaced. 



Tobias Baer July, 3rd 2012 22 

 

 

 

 

 

 

 

 

 
In case of a dephasing of the crab cavities, the (longitudinal) 

bunch center is maximally displaced by up to 𝟐. 𝟏𝝈𝒙 in 5 turns (ncc=1). 

Phase Failure 
Dynamic phase change of CC.R5 by 90°. 

Opposite phase change of both CCs. 

𝑧𝑚𝑎𝑥 =
𝑐

8𝑓
= 9.4𝑐𝑚 

Dependence on Qext. 
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Scaling Laws 
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The maximal displacement for 𝑠𝑖𝑛 𝛷 +
𝜔⋅𝑧

𝑐
= 1. 

if only one CC is affected, 

i.e. no common failure 

scenarios 
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Transverse Distribution 

• Highly overpopulated tails observed: 

 In horizontal plane about 4% of beam 

beyond 4σmeas. 

 Corresponds to ≈20-30 MJ with HL-LHC 
parameters. 

• Collimation system designed for fast 
accidental losses of up to 1MJ. 
          R. Assmann, „Collimation for the LHC High Intensity Beams“, HB2010 

• Need to deplete tails (e.g. by hollow 
electron lens) such that crab cavity 
failures are compliant with 
collimation system specifications. 

F. Burkart et al., CERN-ATS-2011-115. 

vertical 
horizontal 

skew 

F. Burkart et al., CERN-ATS-
Note-2011-057 MD (LHC)  

horizontal 
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Hollow Electron Lens 

• Hollow e- beam around 
proton beam core to 
increase transverse diffusion 
rate for particles with large 
betatron amplitues. 
 Depletion of transverse tails (not efficient for 
 luminosity production) without effect on beam core. 

• Positive experience in Tevatron, particularly 
no emittance growth or instabilities observed. 

• Fast gating on dedicated bunch trains possible. 

 

courtesy of G. Stancari et al., 
Physical Review Letters 107, 2011. 
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Coupled RF Feedback 

• Strongly coupled RF Feedback 
to regulate voltage difference 
of CCs on either side of IP. 

• Similar coupled feedback loop is 
planned to be installed for 
200MHz traveling wave cavities 
in CERN SPS. 

• Can provide additional 
mitigation for certain failures 
but cannot replace passive 
protection against severe 
failure scenarios. 

courtesy of P. Baudrenghien 
et al., LHC-CC11. 

CC2 

CC1 

TX

Z(s) Z(s)

Cavity 1 Cavity 2

S

TX
FDBK FDBK

V1 V2

I1 I2

+-

V2-V1V2-V1

Independent High Power RF 
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Mitigation Options 

• Mitigation options: 

• Larger 𝛽∗ (flat IR optics). 

• Smaller crossing angle (beam-beam wire compensator). 

• Higher crab cavity frequency. 

• Crab kick by several INDEPENDENT crab cavities. 

• Larger Qext (= slower time constant of ext. failures). 

• Coupled RF feedback.   

• Hollow electron lens to deplete transverse tails (essential). 

• Requires: single turn redundant failure detection and interlock. 
• on cavity level. 
• on beam level, e.g. head-tail-monitor. 
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Possible Scenarios 

Tolerable scenarios for internal and external failures with losses 
below 1MJ in max 5 turns: 
 

 

 

 

 

 

 
 

 

 

 Magnet quenching in failure case not excluded. 
 

Scenario 1:  
3 CCs  

Scenario 2: 
𝜷∗ = 𝟐𝟓𝒄𝒎 

Scenario 3: 
800 MHz 

CC frequency (f) 400 MHz 400 MHz 800 MHz 

Number of independant 
CCs (ncc) 

3 3 3 

Qext 1‘250‘000 1‘250‘000 1‘250‘000 

𝜷∗ 15 cm 25 cm 15 cm 

Distance from collimators 
to be depleted below 1MJ. 

1.7σ 1.0 σ 0.9 σ 

Scenario 1: 
𝜷∗ = 𝟑𝟎𝒄𝒎 

Scenario 2: 800 MHz  
or Independent CCs 

Scenario 3: 
large Qext 

CC frequency (f) 400 MHz 400 MHz / 800 MHz 400 MHz 

Number of 
independant CCs (ncc) 

1 2 / 1 1 

Qext 1‘250‘000 1‘250‘000 2‘000‘000 

𝜷∗ 30 cm 15 cm 15 cm 

Fraction to be 
depleted below 1MJ. 

1.1σ 1.1σ 1.5σ 

T. Baer et al., IPAC’12, MOPPC003 
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Outlook 

 

 

 

 

 

 

Technical Design 

Construction 

        2012     2013     2014     2015     2016    2017     2018     2019     2020     2021     2022     2023 

Long shutdown 1 
Splice consolidation 

Long shutdown 2 
LHC injector upgrade 

Long shutdown 3 
HL-LHC and  
CC installation 

SPS CC Test 

LHC CC Test Pt. 4 
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Conclusion 

• Crab Cavities are essential to compensate the geometric 
luminosity loss (and to level the luminosity) for HL-LHC. 

• Crab cavity failures can lead to global betatron oscillations with 
large amplitudes (up to 5σ for ncc=1) on very fast timescales. 
  Unacceptable with multi-MJ tails. 
  Better understanding of failure scenarios (e.g. quench dynamics) needed. 

• Many mitigation options. In general: The more effective the crab 
cavities, the worse are their failure scenarios. 
 Transverse tail depletion with hollow e-lens is essential. 
 Counteract failures with strongly coupled RF feedback. 

• Crab cavity tests in SPS and LHC are foreseen prior to final 
installation in 2022. 
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Further information: 
• T. Baer et al., “Very Fast LHC Crab Cavity Failures and Their Mitigation”, IPAC’12, 

May 2012. 

• E. Jensen et al., “Crab Cavity”, 1st HiLumi LHC / LARP Meeting, Nov. 2011. 

• T. Baer et al., “LHC Machine Protection against Very Fast Crab Cavity Failures”, 
IPAC’11, Sept. 2011. 

• R. Calaga et al., “Beam Losses due to Abrupt Crab Cavity Failures in the LHC”, 
PAC’11, March 2011. 

• T. Baer, “Beam Dynamics Aspects of Crab Cavity Failures”, December 2010. 

• J. Tuckmantel, “Failure scenarios and mitigation”, LHC-CC10, December 2010 
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Analytical Approach 

• Horizontal kick by crab cavity: 

𝑥𝑐𝑐
′ 𝑧 = −

𝑞 ⋅ 𝑉

𝐸
⋅ 𝑠𝑖𝑛 Φ +

𝜔 ⋅ 𝑧

𝑐
 

• Optimal voltage to compensate crossing angle (local scheme): 

𝑉0 =
𝑐 ⋅ 𝐸 ⋅ tan

Θ
2

𝑞 ⋅ 𝜔 ⋅ 𝛽∗𝛽𝑢 ⋅ sin Δ𝜑 ⋅ 𝑛𝑐𝑐

 

• Optimal voltage for compensating cavities: 

𝑉 0 = −
𝛽𝑢

𝛽𝑑
⋅ cos Δ𝜑𝑐𝑐 ⋅ 𝑉0 

𝑞  = particle charge 
𝐸 = particle Energy  (7 TeV) 
𝑉 = voltage of crab cavity 
Φ  = phase of crab cavity (0°) 
Ѳ = full crossing angle  (590 µrad) 
Δ𝜑 = phase advance CC ->IP  (≈ 90°) 
Δ𝜑𝑐𝑐 = phase advance CCu -> CCd  (181.4°) 
𝜔 = angular frequency of CC  (2π∙400 MHz) 
𝑧 = longitudinal position of particle 
𝑐 = speed of light 
𝛽∗ = beta function at the IP 
𝛽𝑢,𝑑 = beta function at upstream/
   downstream CC. 
𝑛𝑐𝑐 = number of CCs per beam on either 
   side of IP. 

ideally 180° 
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Phase Change 

 

 

 

 

 

 

 

 

 
 

In case of a dephasing of the crab cavities left and right of the IP, the 
(longitudinal) bunch center is maximally displaced,  

by up to 𝟐. 𝟐𝝈𝒙 in 5 turns. 

 

 

 

 

 

 

 

 

 

Maximal displacement with Gaussian transverse 
and longitudinal beam distribution. 

Opposite phase change of 
both crab cavities. Nominal 
Gaussian transverse 
(𝜖𝑛 = 3.75𝜇𝑚 ⋅ 𝑟𝑎𝑑) and 
longitudinal (𝑙 = 7.55𝑐𝑚) 
beam distribution. 

Maximal displacement with Gaussian  
longitudinal beam distribution. 

Opposite phase change of 
both crab cavities. Nominal 
Gaussian longitudinal 
(𝑙 = 7.55𝑐𝑚) beam 
distribution. 
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Single particle emittance: 

𝜖 =
𝛼𝑥𝛽 + 𝛽𝑥𝛽

′ 2

𝛽
+

𝑥𝛽
2

𝛽
 

 with𝑥𝛽 = 𝑥 − 𝐷𝑥 ∗
Δ𝑝

𝑝
, 𝑥𝛽

′ = 𝑥′ − 𝐷𝑝𝑥 ∗
Δ𝑝

𝑝
. 

 

Maximal displacement: 

 𝑥 = 𝜖 ⋅ 𝛽= 𝒙𝜷
𝟐 + 𝜶 ⋅ 𝒙𝜷 + 𝜷 ⋅ 𝒙𝜷

′ 𝟐
. 

Normalized Phase Space 

𝛼𝑥𝛽 + 𝛽𝑥𝛽
′

𝛽
 

𝑥𝛽

𝛽
 

𝜖 
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90° Phase Change 

• Maximal phase change in first turn:  

𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛

Δ𝑉
𝑉

1 −
Δ𝑉
𝑉

= 𝟓. 𝟑°. 

 

• Phase change is fastest if cavity 
voltage changes as well. 

V0 

V1 

V(t) 
𝜑 

Illustraction of 90° voltage change. 

Amplitude of cavity voltage. 
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Content 

Static Failure Scenarios 
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Very Simple Approximation 

 

 

 

 
     

 

z 

x 

2



zzx IPCC 
2

)(,


Displacement at IP needed to 
compensate the crossing angle 
(Θ, z small) 

For Θ = 580µrad, βIP = 0.15m, εnorm = 3.75µm∙rad,  
E = 7TeV, σz = 7.55cm:   

 Δx = -2.52 σx∙z/σz 
 

Expected beamlosses from simple Monte Carlo: 
 Particle is lost if  |RANDGauss + 2.52 ∙ RANDGauss| > 5.7 
  

 -> Expected loss: (3.5 ± 0.2)% 
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Simple Approximation (MC) 

Beamloss approximation with simple Monte Carlo (upgrade optics): 
 

• Failure of single cavity (V -> 0):  

  Particle is lost if |x + xcc(z) ∙ k(ΔφCC->TCP)| > 5.7 ∙ σx 

  

 

   -> expected loss: (0.88 ± 0.06)% 
 

• Phase error of single cavity (Φ -> π/2):  

   Particle is lost if |x + xcc(z, Φ = π/2)∙k - xcc(z, Φ = 0)∙k| > 5.7σx 

 

 

   -> expected loss: (24.8 ± 0.3)% 

 

 

CC with 

failure 

CC without 

failure 

1. Gaussian 
Distribution 

2. Gaussian 
Distribution 

Scaling factor (≈ 1.12)  
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Content 

Static Tracking Studies with upgrade optics (MAD-X) 

• Fast Voltage Decay 

• Phase Error 
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Phase Error of CRAB.L5.B1 

 Upgrade Optics, Phase of Crab.L5.B1 = -π/2.  

 Massive beam loss within few turns, mainly at TCP.C6L7.B1 

  
IP5 IP1 

CC failure 

Losses 

Upgrade optics SLHCV3.0 
4444_thin, IP1/5: β* = 0.15m, 
Θ=580μrad, CC Local scheme 
IP5, 400/10,000 particles  
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Phase Error of CRAB.L5.B1 

 Bunchshape at TCP.C6L7.B1 directly after failure. 
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Phase Error of CRAB.L5.B1 

 Bunchshape at TCP.C6L7.B1, 1 turn after failure. 
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Losses vs β* 

 

 

 

 

 

 

 

 

Beam losses for 90⁰ phase shift of single CC (local scheme IP5) 

 


