Report from the Ecloud'12 workshop.

- 1. Fifth electron-cloud workshop, ECLOUD'12, June 5 to 8, 2012 La Biodola (Isola d'Elba), Italy
- 2. Perspectives for positron operation at PETRA III

Rainer Wanzenberg DESY Hamburg, Sep. 11, 2012

ECLOUD'12

62 participants United States: 15, Switzerland: 15, Italy: 10, Germany: 7, Japan: 4, Spain: 3, United Kingdom: 3, France: 2, Mexico: 1, Portugal: 1, Russia: 1

Roberto Cimino, INFN - LNF (Chair Organizing Committee) Frank Zimmermann, CERN (Chair International Advisory Committee)

Program

Tuesday, 5 June

18:15-19:00. Key lecture: Electron cloud effects in accelerators, by Miguel Furman

	Session 1 - ECE on beam dynamics: observations and prediction (8.30-12.50) Chair:Miguel Furman				
	Time	Session 1.1	Time	Session 1.2	
	C. Bergersen	F. Zimmermann (CERN, Switzerland)		T. Demma (LAL/INFN, Italy)	
	8.30-9.00	Electron cloud effects in past and future machines	11.00-11.30	Observations and predictions for DAFNE and Super B	
e				P. Lebrun (FNAL, USA)	
lay, 6 Jun	9.00-9.30	G. Rumolo (CERN, Switzerland) Observations and predictions in LHC and SPS	11.30-12.00	Precision simulations of the electron cloud (EC) in Fermilab Main Injector with VORPAL and related benchmarks	
nes		H. Fukuma (KEK, Japan)		F. Petrov (TUD/GSI, Germany)	
Wedi	9.30-10.00	9.30-10.00 Electron cloud observations and predictions at KEKB, PEP-II and Super B factories		Electron cloud effects in proton and ion machines	
		C. Durana (Carrall 1158)		C. Bhat (FNAL, USA)	
	10.00-10.30 Observations and predictions at CesrTA, and outlook for ILC		12.30-12.50	E-cloud dependence on the bunch profile – An Experiment in the PS and an extension to the LHC	
	10.30-11.00	Coffee Break			
	Session 2 - ECE effects on vacuum and heat load (16.00-19.00) Chair: Elena Chaposnikova				
	Time	Session 2.1	Time	Session 2.2	
une	16:00-16:30	V. Boglin (CERN, Switzerland) ECE's at LHC: vacuum and heat load	18:00-18:20	H. Maury (CINVESTAV, Mexico) Build-up. & heat-load simulations - benchmarking for LHC	
Wednesday, 6 Ju	16:30-17:00	K. Shibata (KEK, Japan) SuperKEKB vacuum system & KEK studies	18:20-18:40	R. Wanzenberg (DESY, Germany) Observations of electron cloud phenomena at PETRA III	
	17:00-17:20	S. Casalbuoni (KIT, Germany) Beam heat load in superconducting wigglers'	18:40-19:00	L. Boon (U. Purdue, USA) Chamber surface roughness and electron cloud for the APS SCU	
	17:20-17:40	O. Dominguez (EPFL/CERN, Switzerland) Benchmarking at LHC			
	47.40.40.00	Cutto David	20.15	Diseas	

		Session 3 - Surface Properties, Coating and Experimental Studies (8.30-13.10) Chair: Roberto Cimino					
Thursday, 7 June	Time	Session 3.1	Time	Session 3.2			
	8:30-9:00	R. Larciprete (CNR/INFN, Italy) The chemical origin of SEY at technical surfaces	10:50-11:20	M. Belhaj (ONERA/CNES, France) ONERA/CNES – simulation model and measurements for SEY			
	9:00-9:30	F. Schäfers (HMI-Berlin, Germany) Soft X-ray reflectivity from quasi-perfect mirros to accelerator walls	11:20-11:40	P. Costa Pinto (CERN, Switzerland) Carbon coating of SPS dipole chambers			
			11:40-12:00	N. Bundaleski (U. Lisboa, Portugal) Study of SEY degradation of amorphous carbon coatings			
		G. Dugan (U. Cornell, USA) Photo reflectivity simulations	12:00-12:30	I. Montero (ICMM/CSIC Madrid, Spain) Novel types of anti-ecloud surfaces			
	9:30-9:50		12:30-12:50	O. Meusel (U. Frankfurt, Germany) Experimental Studies of Stable Confined Electron Clouds using Gabor Lenses			
	9:50-10:20	0-10:20 A. Krasnov (BINP, Russia) Studies at BINP		R. Flammini (CNR/INFN, Italy) XPS and SEY measurements upon scrubbing at different electron kinetic energies: the case of TiN			
	10:20-10:50	Coffee Break					
Thursday, 7 June	Session 4 - Multipactoring and related effects (15.10-18.30) Choir: Mauro Pivi						
	Time	Session 4.1	Time	Session 4.2			
	15:10-15:30	1. Kaganovich (PPPL, Russia) Secondary Electron Emission in the Limit of Low Energy and its Effect on High Energy Physics Accelerators	17:20-17:40	F. Caspers (CERN, Switzerland) SPS dipole multipactor test and TE Wave diagnostics			
	15:30-15:50	 Gimeno (U. Valencia, Spain) on behalf of D. Roboso (ESA, The Netherlands) Multipactoring in high-power RF devices on satellites 	17:40-18:00	M. Mattes (EPFL, Switzerland) Modeling interaction of e-cloud & microwaves			
	15:50-16:20	B. Gimeno (U. Valencia, Spain) Multipactoring activities at VALspace/Valencia	18:00-18:30	John Sikora (U. Cornell, USA) TE Wave Measurement and Modeling			
	16:20-16:50	S. Lai (MIT, USA) Incoming and outgoing electrons in spacecraft charging	18:45-19:45	Football match: ECE theory VS ECE Experiment			
	16:50-17:20	Coffee Break	20:15	Dinner			

		Session 5 – Simulations and diagnostics (8:30-13:00) Chair: Giovanni Rumolo				
	Time	Session 5.1	Time	Session 5.2		
Friday, 8 June	8:30-8:55	G. Iadarolo (CERN, Switzerland) Py-Ecloud and build up simulations at CERN	11:10-11:40	G. Franchetti (GSI, Germany) Incoherent beam effects		
	8:55-9:20	J. Esteban Muller (CERN, Switzerland) Synchronous phase shift at LHC	11:40-12:00	T. Demma (LAL/INFN, Italy) A Mapping Approach to the Electron Cloud for LHC		
	9:20-9:45	K. LI (SLAC, USA/CERN, Switzerland) Instabilities Simulations with Wideband Feedback Systems: HEADTAIL, WARP, CMAD	12:00-12:20	A. Pertica (STFC-ISIS, UK) Electron cloud observations at the ISIS Proton Synchrotron		
	9:45-10:10	H. Bartosik (CERN, Switzerland) Benchmarking of instability simulations at LHC	12:20-12:40	J. Flanagan (KEK, Japan) Refined analysis of electron-cloud blow-up data at CesrTA using coded aperture		
	10:10-10:40	K. Ohmi (KEK, Japan) ECE codes & simulations at KEK	12:40-13:00	J. Crittenden (U. Cornell, USA) Electron Cloud Buildup Characterization Using Time-Resolved Shielded Pickup Measurements and Custom Modeling Code		
	10:40-11:10	Coffee Break				
Friday, 8 June	Session 6 - Mitigation (16:00-19:30) Chair: Gerry Dugan					
	Time	Session 6.1	Time	Session 6.2		
	16:00-16:30	M. PW (SLAC, USA) Mitigation strategy: overview, including LHC and ILC	18:20-18:40	W. Hofie (CERN, Switzerland) Development of transverse feedbacks against ECE at SPS and LHC		
	16:30-17:00	M. Jimenez (CERN, Switzerland) Mitigation Strategy at CERN	18:40-19:00	M. Zobov (INFN, Italy) Operating Experience with Electron Cloud Clearing Electrodes at DAFNE		
	17:00-17:30	A. Hershkovitch (BNL, USA) In-situ coating technology	19:00-19:30	R. Cimino (INFN, Italy) & F. Zimmermann (CERN, Switzerland) Conclusions		
	17:30-18:00	J. Fax (SLAC, USA) Overview of EC-instability control using feedbacks				
	18:00-18:20	Coffee Break	20:15	Dinner		

Program

Tuesday 05 June 2012

Electron Cloud Effects (ECE) in Accelerators

Wednesday 06 June 2012

- ECE on Beam Dynamics: observations and prediction
- ECE Effects on Vacuum and Heat Load

Thursday 07 June 2012

- Surface Properties, Coating and Experimental Studies
- Multipactoring and Related Effects

Friday 08 June 2012

- Simulations and Diagnostics
- Mitigation

http://agenda.infn.it/conferenceOtherViews.py?view=standard&confld=4303

Tuesday 05 June 2012

Electron Cloud Effects (ECE) in Accelerators

Opening talk by:

Miguel Furman (LBNL (Lawrence Berkeley Natl. Lab.))

The workshop was dedicated to the memory of Francesco Ruggiero (1957 – 2007).

Francesco's 1997 "crash programme" was meant to address the potential problems at the LHC.

The knowledge that has come out of this programme, plus the recent experience at the LHC and SPS have already greatly benefitted the field as a whole, and will continue to benefit the design and reliability of accelerators worldwide for a long time to come.

What is the ECE (illustrated with the LHC cartoon by F. Ruggiero)

- Beam emits synchrotron radiation:
 - provides source of photo-electrons
 - other sources: beam-gas ionization, stray protons striking the wall
- Photo-electrons get rattled around the chamber from multibunch passages
 - —especially for intense positively-charged beams (e⁺, protons, heavy ions)
- Photoelectrons yield secondary electrons
 - yield is determined by the secondary emission yield (SEY) function ™(E):
 - characterized by peak value δ_{max} at E=E_{\text{max}}
 - e⁻ reflectivity $\delta(0)$: determines survival time of e⁻
 - Typically, $\delta_{max} \text{~~1–3},$ and $\text{E}_{max} \text{~~200-400 eV}$
- •Typical e⁻ densities: $n_e = 10^{10} 10^{12} \text{ m}^{-3}$ (~a few nC/m)
- •Typical e⁻ energies: <~ 200 eV's (with significant fluctuations)

DESY

Page 6

Consequences

Possible consequences:

- single-bunch instability
- multibunch instability
- emittance growth
- gas desorption from chamber walls
- excessive energy deposition on the chamber walls (important for superconducting machines, eg. LHC)
- particle losses, interference with diagnostics,...
- - many possible ingredients: bunch intensity, bunch shape, beam loss rate, fill pattern, photoelectric yield, photon reflectivity, SEY, vacuum pressure, vacuum chamber size and geometry, ...
- The ECE is closely related to the mechanism of photo-amplifiers
 - * IT IS ALWAYS UNDESIRABLE IN PARTICLE ACCELERATORS
 - * IT IS A USUALLY A PERFORMANCE-LIMITING PROBLEM

* IT IS CHALLENGING TO PROPERLY QUANTIFY, PREDICT AND EXTRAPOLATE

Wednesday 06 June 2012

- ECE on Beam Dynamics: observations and prediction
 - 8 contributions
- ECE Effects on Vacuum and Heat Load
 - 7 contributions

ECE on Beam Dynamics: observations and prediction

Giovanni Rumolo (*CERN*): Observations and Predictions in LHC and SPS

CERN's accelerator complex

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

Electron cloud in the SPS

Electron cloud in the LHC

- 75ns operation → No electron cloud observations in 2011
- 50ns operation
 - \rightarrow Electron cloud signatures during scrubbing
 - → Physics operation with only residual electron cloud 25ns MDs → Always electron cloud, it allowed monitoring the evolution of δ_{max} in the arcs
- ⇒ The scrubbing run took place in the week 5–12 April 2011
- ⇒ Nominal 50ns spaced beams with up to 1020 bunches per beam injected into the LHC and stored at 450 GeV/c
- ⇒ Very efficient machine cleaning
- ⇒ After scrubbing, physics with 50ns and stable beams with 1380 bunches per beam on 28 June 2011

Electron cloud in the LHC: Concluding remarks

	δ _{max} (estimated)	Threshold δ _{max} (50ns, 450 GeV)	Threshold δ _{max} (50ns, 3.5 TeV)	Threshold δ _{max} (25ns, 450 GeV)	Threshold δ _{max} (25ns, 3.5 TeV)
Beam screen (arcs)	1.52	2.2	2.1	1.45	1.37

- 00
- ⇒ After the 25ns MDs, the LHC beam chambers have been cleaned to δ_{max} values well below the build up threshold for nominal 50ns beams
- ⇒ Since the present level of machine conditioning was preserved, 'ecloud-less' operation of LHC with 50ns beams up to high intensities is currently taking place in 2012, even in absence of a new scrubbing run
- ⇒ 50ns physics operation has been serving the purpose to clean parts of the LHC open to air to the needed extent
- ⇒ 25ns beams are still affected by e-cloud, but scrubbing should be possible could with ~2 weeks machine time (including also test ramps) or alternative filling schemes (micro-batches) could be used

Gerald Dugan (*Cornell University*) : Observations and Predictions at CesrTA, and outlook for ILC

Studies of the impact of electron clouds on the dynamics of bunch trains in Cesr have been a major focus of the Cesr Test Accelerator (CesrTA) program.

In this presentation, we report measurements along bunch trains of

coherent tune shifts,

coherent instability signals,

(coherent damping rates), and

emittance growth.

The measurements were made for a variety of bunch currents, train configurations, beam energies and transverse emittances, similar to the design values for the ILC damping rings.

The measurements will be compared with simulations which model the effects of electron clouds on beam dynamics, to extract simulation model parameters and to quantify the validity of the simulation codes.

30 bunch train: bunch by bunch spectra

Detailed features of horizontal and vertical lines

A lower frequency (~3 kHz) shoulder in the horizontal tune spectrum is attributable to the known dependence of horizontal tune on the multibunch mode. In many cases, there is bifurcation of the vertical tune spectrum, which starts to develop at the same bunch number as the headtail lines, and is not well understood.

Kyo Shibata (*High Energy Accelerator Research Organization (KEK*)): SuperKEKB Vacuum System & KEK Studies

KEKB was shut down on Jun 30th 2010, and upgrade of KEKB has started.

KEKB B-factory :

Electorn-positron collider with asymmetric energies of 8 GeV (e-) and 3.5 GeV (e+).
Made a great contribution to confirmation of CP violation in the neutral B meson system.
Operation period : 1998 to 2010
Peak luminosity : 2.1×10³⁴ cm⁻²s⁻¹

Total integrated luminosity : 1040 /fb

To pursue research on flavor physics, much more luminosity is required and the SuperKEKB project was begun in 2010.

Commissioning of SuperKEKB will start in the second half of FY2014.

Mission of SuperKEKB

New Beam Pipes for SuperKEKB

To cope with the electron cloud issues and heating problems, antechamber type beam pipes are adopted with a combination of TiN coatings, grooved shape surfaces and clearing electrodes.

LER arc section:

✓ Beam pipes are replaced with new aluminum-alloy pipes with antechambers. (~2000 m)

HER arc section:

✓ Present copper beam pipes are reused.

 \checkmark Since the HER energy is reduced from 8.0 to 7.0 GeV, SR power at normal arc section is more or less the same as KEKB.

>Wiggler section (both ring):

✓ Copper beam pipes with antechambers are used.

by courtesy of Y. Suetsugu

Countermeasures against Electron Cloud Effect

Electron cloud instability can be a serious problem for LER (e+)

- > The threshold of electron density to excite the head-tail instability is $\sim 1.6 \times 10^{11} \text{ e}/\text{m}^3$.
- By using these countermeasures, the average electron density on the order of 10¹⁰ e⁻ /m³ will be obtained.

> Various mitigation techniques were evaluated at KEKB LER.

				by courtesy of Y. Sue	etsugu
Sections	L [m]	L[%]	Countermeasure	Material	
Total	3016	100			
Drift space (arc)	1629 m	54	TiN coating + Solenoid	Al (arc)	
Steering mag.	316 m	10	TiN coating + Solenoid	AI	
Bending mag.	519 m	17	TiN coating + Grooved surface	AI	
Wiggler mag.	154 m	5	Clearing Electrode	Cu	
Q & SX mag.	254 m	9	TiN coating	AI (arc)	
RF section	124 m	4	(TiN coating +) Solenoid	Cu	
IR section	20 m	0.7	(TiN coating +) Solenoid	Cu or ?	

Thursday 07 June 2012

- Surface Properties, Coating and Experimental Studies
 - 10 contributions
- Multipactoring and related effects
 - 7 contributions

Surface Properties, Coating and Experimental Studies

Rosanna Larciprete (CNR-Istituto dei Sistemi Complessi, Roma, and INFN-LFN, Frascati, Italy): The chemical origin of SEY at technical surfaces

three-step process:

- production of SEs at a depth z
- transport of the SE toward the surface
- emission of SE across the surface barrie

X-ray photoelectron spectroscopy (XPS)

XPS of technical surfaces / C film on Cu

AI samples from PETRA III

dissociation of residual gas molecules as H₂O and CO induced at the metal surface by the e⁻ beam determines a rapid oxidation of the irradiated area, as well as, although to a lesser extent, of the surrounding region

AI samples from PETRA III

SEY is determined by the rates of AI oxidation and reduction

the SEY variation follows the oxygen content of the AI surface

Thursday 07 June 2012

- Surface Properties, Coating and Experimental Studies
 - 10 contributions
- Multipactoring and related effects
 - 7 contributions

Shu T. Lai (MIT, USA) SPACECRAFT CHARGING: INCOMING AND OUTGOUNG ELECTRONS

Spacecraft Charging is Harmful to the Health of Onboard Electronics

Discharges degrade

- Solar cells
- Controls
- Navigation

Charging affects

- Scientific measurements
- Telemetry signals
- Electronic communications

Multipactoring and related effects

Why do Spacecraft Charge?

$$\frac{1}{2}m_{e}V_{e}^{2} = \frac{1}{2}M_{i}V_{i}^{2}$$

• The electrons are much lighter and faster than the ions

 $v_e >> V_i$

• Therefore, the flux of electrons is much higher than that of ions

 $n_e q_e \mathbf{v}_e >> n_i q_i V_i$

- This is why spacecraft often charge to negative potentials in a plasma
- This is true not only in space but also in the laboratory.

Activities of the Val Space Consortium and the European Space Agency in the Study of RF Breakdown Phenomena in Microwave Passive Components for Space Applications

Benito Gimeno^(1,3), Vicente E. Boria^(2,3), David Argilés⁽³⁾, David Raboso⁽⁴⁾

(1) University of Valencia, Spain

(2) Technical University of Valencia, Spain

(3) VAL SPACE CONSORTIUM, Valencia, Spain

(4) European Space Agency, ESA/ESTEC, The Netherlands

ECLOUD'12 5-9 June 2012, La Biodola, Isola d'Elba, Italy

- > Space weather is a very hostile environment
- Solar activity causes a continuous flux of high energy elemental particles towards the spaceships

European High Power RF Space Laboratory: Up to date the Laboratory can carry out these tests:

- Multipactor effect: Single-carrier and Multicarrier
- Corona effect
- Power Handling
- Passive Intermodulation (PIM): guided and radiated

Friday 08 June 2012

- Simulations and diagnostics
 - 10 contributions
- Mitigation
 - 7 contributions

Giovanni Iadarola (CERN) Py-Ecloud and Build Up Simulations at CERN

ECLOUD	PyECLOUD
 Developed at CERN since 1997 (mainly by F. Zimmermann, G. Bellodi, O. Bruning, G. Rumolo, D. Schulte) 	 Development started in 2011
 Pioneering work which defined a physical model for the EC build-up 	 Inherits the physical model of ECLOUD
• FORTRAN 77 code	• Python code
 Scarcely modular (difficult to maintain, develop and debug) 	 Strongly modular (much easier to develop and maintain)
	 Several improvements introduced with better performances in terms of reliability, accuracy, efficiency, and flexibility

Simulations and diagnostics: Py-Ecloud

Mitigation

Mauro Pivi (SLAC) Mitigation Strategy: Overview, including LHC and ILC

ILC Working Group Baseline Mitigation Recommendation					
	Drift*	Dipole	Wiggler	Quadrupole*	
Baseline Mitigation I	TiN Coating	Grooves with TiN coating	Clearing Electrodes	TiN Coating	
Baseline Mitigation II	Solenoid Windings	Antechamber	Antechamber		
Alternate Mitigation	Amorphous Carbon/ NEG Coating	TiN Coating	Grooves with TiN Coating	Clearing Electrodes or Grooves	

Amorphous carbon not sufficiently tested in lepton machines under high radiation, yet

Mitigation

José Miguel JIMENEZ (CERN) SPS: Mitigation Strategy at CERN

- > SPS has to be prepared to digest:
 - High bunch intensity: up to 2.5 10¹¹ ppb @ 25 ns ; 3.5 10¹¹ ppb @ 50 ns

and

Small emittances (LHC requirements)

cannot be guaranteed since electron cloud limitations have been identified:

- Beam instabilities: transverse emittance blow-up and single bunch vertical instability
- **Pressure rise:** beam gas scattering, dose rates to tunnel and components
- > Improvements considered against Electron Cloud:
 - Suppression of the build-up: Clearing electrodes and very low SEY (<1.1) coatings</p>
 - Mitigation of the build-up: Scrubbing Runs
 - Cure of the induced effects (single bunch vertical instability): High bandwidth feedback systems

Status Report EC Suppression – Very low SEY a-C Coatings

up to nominal B-fields ?

MD w35 Carbon coated StSt 9 MD w35 Carbon co 3y in SPS

Carbon coated Carbon/StSt 3y in SPS Half coated V

Perspectives for positron operation at PETRA III

Rainer Wanzenberg | Report from ECLOUD'12 | Page 37

PETRA III Vacuum chamber

IPAC 2011

Secondary Electron Yield of Al Samples from the Dipole chamber of PETRA III

D.R. Grosso, M. Commisso, and R. Cimino, LNF-INFN, Frascati Italy R. Flammini, CNR-IMIP, Monterotondo, Italy R. Larciprete, CNR-ISC, Rome, Italy R. W., DESY, Hamburg, Germany

Arc: Al, 80 mm x 40 mm

Instability threshold – coasting beam model

Broad band resonator model + coasting beam model *)

$$Z(\omega) = \frac{cR_S}{\omega} \frac{1}{1 + iQ\left(\frac{\omega_e}{\omega} - \frac{\omega}{\omega_e}\right)}$$
(10)
$$= K \frac{\lambda_e}{\lambda_+} \frac{L}{\sigma_y(\sigma_x + \sigma_y)} \frac{\omega_e}{\omega} \frac{Z_0}{4\pi} \frac{Q}{1 + iQ\left(\frac{\omega_e}{\omega} - \frac{\omega}{\omega_e}\right)},$$

where K is an enhancement factor due to cloud size, pinching etc. [11], and Z_0 is the impedance of vacuum (377 Ω). The figure 4 shows K = 1.5. In the case of KEKB, the enhancement factor was $K = 2 \sim 4$ for the vertical wake field.

$$U \equiv \frac{\sqrt{3}\lambda_{+}r_{e}\beta\omega_{0}}{\gamma\omega_{e}\eta\sigma_{\delta}}\frac{|Z_{\perp}(\omega_{e})|}{Z_{0}} = \frac{\sqrt{3}\lambda_{+}r_{e}\beta}{\gamma\nu_{s}\omega_{e}\sigma_{z}/c}\frac{|Z_{\perp}(\omega_{e})|}{Z_{0}} \quad < \mathbf{1}$$

threshold density:

$$\rho_{e,th} = \frac{2\gamma\nu_s\omega_e\sigma_z/c}{KQ\sqrt{3}r_e\beta L} \qquad \qquad K \sim \omega_e\sigma_z/c.$$

(L = circumference of the ring)

Q~5<K

$=\sqrt{\frac{\lambda_{+}r_{e}c^{2}}{\sigma_{u}(\sigma_{x}+\sigma_{u})}}$		$K\sim\omega_e\sigma_z/c$.
$\bigvee g(x + y)$	PETRA III:	~ 1.4 x 10 ¹² m ⁻³

 λ_+ = beam line density in the e+ bunch

 $\omega_{e,y}$

(PETRA III, 960 bunches, 100 mA)

*) K. Ohmi: Electron Cloud Effect in Damping Rings of Linear Colliders 31st ICFA Advanced Beam Dynamics Workshop on Electron-Cloud Effects "ECLOUD'04"

PETRA III – Commissioning and User Runs

2009

Commissioning:

- First stored beam (April 13)
- Operation with <u>all</u> (2 x 10) wigglers from

Aug 12, 2009

2010

- First user runs (friendly user) (Feb, 2010)
- Ecloud studies May/June 2010
- Aug 2 Aug 7, 2010
 - Machine studies <u>without</u> wigglers
- > User runs (Aug 2010)

2011

> About 9 month of user runs

3 bunch patterns

> Ecloud Studies Oct, Nov.

2012

Scrubbing Run (March)

User runs, bunch pattern as 2011 + recently 320 bunches					
480 x 1	╋┓╷╏╷╏╷╏╷╏╷╏╷╏╷╏╷╏╷╏╷╏╷╏╷╏				
Filling scheme	Bunch positions (8 ns spacing) 1 3 5 7 25 27 29 31 960 16 ns				

Conditioning + Scrubbing: Benefits

Simulations with ECLOUD 4.0

PETRA III, 100 mA, different filling patterns, SEY: 1.5, 2.0, 2.5

Electron cloud (pattern 240)

Electron cloud (pattern 320)

Rainer Wanzenberg | Report from ECLOUD'12 | Page 42

Simulations with ECLOUD 4.0 (cont.)

PETRA III, 100 mA, different filling patterns, center density

Emittance growth 100 mA 60 x 6 not ok 100 mA 60 x 4 ok (threshold density ~ 1.4e¹² m⁻³)

Simulation studies indicate an instability for the 60 x 6 pattern if the SEY is about 2.0

Recent Simulations with PYECLOUD

PETRA III, 100 mA, 60x6 bunches, SEY: 2.0

Comparison ECLOUD 4.0 versus PYECLOUD, preliminary results

Total number of electons: Blue: PYECLOUD, Red: ECLOUD 4.0

Central cloud density

PETRA III Perspectives

- A clear conditioning effect has been observed. For user runs filling patterns with 40 x 4 and 60 x 4 bunches were used in 2010. In 2011 it was possible to fill 240 bunches with a 32 ns bunch spacing.
- In 2012 two dedicated scrubbing runs have improved the situation. It is possible to use 320 bunches with 24 ns bunch spacing and no significant emittance growth (user runs with 320 bunches May 16, 2012).
- > This "proves" that the observed emittance growth is really due to electron clouds.
- Simulations for different filling patterns indicate that the SEY is ~ 2.0 after conditioning and scrubbing.
- Measurements of AI samples at INFN, Frascati, have shown NO formation of a carbon layer, which is required to reduces the SEY significantly. The SEY is following the oxygen content of the surface. A SEY of 1.5 was found in the lab only under very good vacuum conditions (10⁻¹⁰ mbar).
- In my view: Operation with 480 bunches (16 ns bunch spacing) will require a SEY of about 1.5 which can only be achieved with scrubbing runs AND better vacuum conditions.

Thank you for your attention !

Rainer Wanzenberg | Report from ECLOUD'12 | Page 46