

UFOs in the LHC

Tobias Baer

May, 17th 2011

Acknowledgements: E. Elsen, E. B. Holzer, S. Jackson, M. Misiowiec, E. Nebot, A. Nordt, J. Wenninger, C. Zamantzas

May, 17th 2011

Joint DESY and University of Hamburg Accelerator Physics Seminar

2. Fast Loss Events (UFOs)

3. Outlook and Mitigation

May, 17th 2011 Joint DESY and University of Hamburg Accelerator Physics Seminar

2. Fast Loss Events (UFOs)

3. Outlook and Mitigation

May, 17th 2011 Joint DESY and University of Hamburg Accelerator Physics Seminar

Challenge: Stored Energy

- SPS incident in June 2008: 400 GeV beam with 2 MJ (J. Wenninger, CERN-BE-2009-003-OP)
- LHC stored beam energy:

Nominal intensity: 3.2·10¹⁴ protons. (2808 bunches) Nominal beam energy: 7 TeV Nominal stored energy (beam): **362 MJ**

- Stored energy in magnets (nominal): over 10 GJ
- Damage threshold: ≈10 kJ (5% of single bunch). (R. Schmidt, PAC07)
- Quench limit: few mJ/cm³
- Now 3.5 TeV, 35 MJ. In 2011 up to 100 MJ.

May, 17th 2011

Beam Collimation

• Three stage collimation system (≈100 collimators and absorbers)

primary (5.7σ): deflection secondary (8.5σ): absorbtion tertiary (15σ): triplet protection special dump and injection protection collimators

Collimator Opening

Beam Dump System

VAC.

May, 17th 2011

Joint DESY and University of Hamburg Accelerator Physics Seminar

UΗ

• Over 200 systems can request a beam dump:

Power converter BPMs Collimators Software Interlock System Vacuum Access system

BLMs

- ≈ 4000 BLMs
- 12 different integration times (40µs – 83.8s)

- 2. Fast Loss Events (UFOs)
 - Observations
 - UFOs below threshold
 - UFOs at injection kicker magnets
 - Theories

3. Outlook and Mitigation

Fast Loss Event (UFO)

Unconventional loss pattern: Loss location often in the arc, timescale: 10 turns.

Fast Loss Events vs. Intensity

A CAN

Until now: **20 emergency beam dumps** due to fast loss events. Fast loss event rate proportional to intensity

UH

• After the increase of the BLM Threshold by a factor of 3 there were about **4.1 times less beam dumps** due to fast loss events.

- 2. Fast Loss Events (UFOs)
 - Observations
 - UFOs below threshold
 - UFOs at injection kicker magnets
 - Theories

3. Outlook and Mitigation

- 113 events below threshold found in 2010. (E. Nebot)
- **UFO rate**: proportional to beam intensity.

Number of bunches

courtesy of E. Nebot

Events Below Threshold

• Average signal: no clear dependence on intensity

 Loss duration: tendency to decrease with intensity

courtesy of E. B. Holzer and E. Nebot Ж

• Online UFO detection from live BLM data.

Losses (RS 4) of **two BLMs in 40m** are above **1E-4 Gy/s**. RS 2 / RS 1 > 0.55 (UFO average : 0.89). RS 3 / RS 2 > 0.45 (UFO average: 0.79).

- Over 4000 triggers so far.
 - From subset of 230 manually verified triggers: *About 70% are UFOs, 10% ambiguous cases, 20% are false triggers.*
 - For most analysis additional cut. E.g.:

Only flat top UFOs, loss of UFO BLM (RS05) > $5 \cdot 10^{-4}$ Gy/s ($\approx 5 \%$ of threshold).

53 events remain of subset, of which 51 are clear UFOs (96%) and 2 are ambiguous cases.

Most events are much below threshold.

The UFOs are distributed all around the machine.

38 candidate UFOs at injection kicker magnet for Beam 2.

Mainly UFOs at injection kicker magnets.

UFO rate

On average: **10 UFOs/hour**

1978 candidate UFOs at 3.5 TeV. Data scaled with 0.7669 (detection efficiency from reference data)

May, 17th 2011

Joint DESY and University of Hamburg Accelerator Physics Seminar

UΗ

iii

- 2. Fast Loss Events (UFOs)
 - Observations
 - UFOs below threshold
 - UFOs at injection kicker magnets
 - Theories
- 3. Outlook and Mitigation

Dump on 01.05.2011

Dump on 01.05.2011

• From fit to losses (BLMEI.05L2.B1E10_MKI.D5L2.B1): Amplitude: 0.63 Gy/s Width: 0.29 ms

UH

Since 08.04.2011 in total 460 fast loss events around MKIs.
 (104 around MKI in IP2, 336 around MKI in IP8).

Distribution of first BLM which sees the loss:

MKI UFOs During Scrubbing

• Typical scenario for MKI UFOs during scrubbing: Loss spikes occur in first few minutes after an injection and go away then.

May, 17th 2011

- 2. Fast Loss Events (UFOs)
 - Observations
 - UFOs below threshold
 - UFOs at injection kicker magnets
 - Theories

3. Outlook and Mitigation

S

- Two extreme cases:
 - UFO much larger than beam: the beam is imaging the UFO.
 - UFO much smaller than beam: the UFO is imaging the beam.

Most UFO shapes are Gaussian, thus most UFOs are expected to be smaller than the beam.

• From FLUKA simulations: size $\approx 1 \ \mu m$.

(cf. M. Sapinski, F. Zimmermann at Chamonix 2011)

courtesy of J. Wenninger (cf. MPP 25.03.2011)

UFO Speed

• UFO speed: $v_U = \frac{\sqrt{\sigma_b^2 + \sigma_U^2}}{\sigma_T} > \frac{\sigma_b}{\sigma_T}$

 v_u : UFO speed, σ_b : transverse beam size, σ_u : UFO size, σ_T : temporal width of loss.

• From free fall:

$$\boldsymbol{v}_U = \sqrt{2 \cdot \boldsymbol{g} \cdot \boldsymbol{h}} = 0.63 \frac{m}{s}$$

The UFO speed corresponds to the expected speed for a free fall from the aperture.

From wire scans: linear dependency of BLM signal on beam energy

2. Fast Loss Events (UFOs)

3. Outlook and Mitigation

Next Steps and Mitigation

- Next Steps:
 - Improve diagnostics (acquisition of turn-by-turn data)
 - Better localization of UFOs at injection kicker magnets (simulations, additional BLMs)
 - Determine real quench limit.
- Mitigation Strategy:

- **20 emergency beam dumps** due to UFOs so far.
- Over 4000 candidate UFOs detected in 2011 so far.
 2 UFOs were dumping the beam.
 Most events at 3.5 TeV.
 Increased UFO rate around injection kicker magnets.
- UFOs are prospectively micrometer sized dust particles.
- Next step: improve the diagnostics. *Acquisition of turn-by-turn BLM data. Installation of additional BLMs.*

Thank you for your Attention

Further information:

- T. Baer, "Update on UFOs", LHC Machine Protection Panel, Geneva, May 2011.
 - T. Baer, "LHC Machine Protection and UFOs", DPG Spring Meeting, Karlsruhe, March 2011.
 - M. Sapinski, "Is the BLM system ready to go to higher intensities?", Workshop on LHC Performance, Chamonix, Jan. 2011.

Tobias Baer

CERN BE/OP Tobias.Baer@cern.ch

Office: +41 22 76 75379

Backup slides

- Distributed ion pumps (PF-AR, HERA).
- Electrical Discharges (PF-AR).
- Movable Devices. (LHC)
- Particles frozen or condensated at cold elements. (ANKA)

Loss Time

UH

iii

Example: Loss at MKI for B1

- Loss starts at BLMEI.05L2.B1E20 MKI.C5L2.B1
- BLMQI.04L2.B1E20_MQY at 98% of dump threshold (RS5)

Scale: Log 💌

Sector

🖌 1 - 2 🖌 5 - 6

2-3 6-7

🖌 3 - 4 🖌 7 - 8

¥4-5 ¥8-1

Sector 4-

Display Optics Ele

Integration Time

🖌 Beam 1

🖌 Beam 2

🖌 Тор

Beam

At 3.5 TeV stable beams.

Section

🖌 LSS

🖌 DS

ARC ARC

Unit: Gray / s 💌

Sectors Filter Octant Filter Dump Filter List Filter Regex Filter

Type

✓ IC

🗌 ЦС

SEM

Total Losses: 0.4919 [Gray / s]

88 🔍 -

🖌 Quad

✓ Other

2 Element

✓ Mohile

1E1

1E0 :

1E-

1E-2

8 1E-3

1E--1E-3

1E-6

Eilter (3549 / 3891) -Location

🖌 Use DCUM

Example: UFOs at MKI R8

UFO at 2352 GeV, 228 bunches. Loss starts at BLMEI.05R8.B2E10_MKI.C5R8.B2.

UFO at 1424 GeV, 768 bunches. Loss starts at BLMQI.04R8.B1I30_MQY.

Lossratio for MKI UFOs B1

1255 SVA012

May, 17th 2011

Joint DESY and University of Hamburg Accelerator Physics Seminar

UH

iii

Lossratio for MKI UFOs B2

1255 SVA412

Joint DESY and University of Hamburg Accelerator Physics Seminar

UΗ

iİi

Dynamics of Dust Particles

From **simulations**:

 Dust particle will be positively ionized and be repelled from the beam.

> Beam intensity: 2.3·10¹² protons, Al object.

 Loss duration of a few ms.
 Losses become shorter for larger beam intensities.

courtesy of F. Zimmermann ЭН

- 2. Fast Loss Events (UFOs)
 - Observations
 - UFOs below threshold
 - UFOs at injection kicker magnets
 - Theories

3. Outlook and Mitigation