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Linear Optics from Closed Orbits (LOCO)
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Introduction

❏ LOCO: Linear Optics from Closed Orbits.

❏ Simulation programs (e. g. MAD) can compute

response matrices for a given lattice.

❏ LOCO uses the opposite approach: Attempt to

reconstruct the linear optics from measured response

matrices.

❏ A successful LOCO analysis helps improving the
understanding of the status of the storage ring.

Peter Schmid ACCELERATOR PHYSICS SEMINAR 13th December 2011



Objective

Determining the

❏ quadrupole gradients.

❏ BPM gains.

❏ calibration factors of the steerer magnets.

❏ conversion factors of the skew quadrupole gradients.

❏ BPM coupling.

❏ quadrupole roll.

❏ focusing properties of IDs.
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Plot of a Response Matrix

❏ Kick the beam ho-

rizontally/vertically

and record the

response at the

BPMs.
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Response matrix of the model

Response matrixMij :

change in orbit at BPMi depending on the strengthθj of the

corrector magnetj




x

y



 = M





θx

θy





❏ Vertical response matrix:

Mij =

√
βiβj

2 sinπν
cos (|φi − φj | − πν)

❏ Horizontal response matrix:

Mij =

√
βiβj

2 sinπν
cos (|φi − φj | − πν)− θjηj

αcL0
ηi

Dispersive term in the horizontal plane:
The length of the orbit is determined by the RF frequency:

→ The change in path length caused by the kick has to be offset by

a change in energy keeping the revolution time constant.

❏ βi beta function

❏ φi phase advance

❏ ηi dispersion

❏ ν tune

❏ αc momentum

compaction factor

❏ L0 length of the

ring
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Method

❏ The parameters in the model are varied.

❏ Goal: Minimizing the difference between measured
and simulated response matrix.

Figure of merit

χ2 =
n
∑

i=1

m
∑

j=1

(

Mmeas
ij −Mmodel

ij

)2

σ2
i

=
N
∑

k=i,j

E2
k

The error vector is minimized by iteration. (SVD, Gauß-Newton

method)

Enew
k = Ek +

∂Ek

∂Kl

∆Kl

−Ek =
∂Ek

∂Kl

∆Kl

The response matrix is not a linear function of the qua-
drupole gradients. Fit needs to be iterated until conver-
gence occurs.

❏ σi: noise level of the

BPMs

❏ Ek: error vector

❏ Kl: fit parameter;

gradient, gain, etc.

❏ σ(model−meas) :=

standard deviation
(

Mmodel
ij −Mmeas

ij

)
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BESSY II

❏ Double bend

achromat lattice

❏ eight super cells

❏ Circumference

L = 240m.

❏ Nominal Energy

E = 1.72GeV.

❏ Emittance

ǫx = 6nm rad.

❏ Emittance

ǫx = 4nm rad

including super

conducting devices.
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Fit parameters for BESSY II

❏ 108 horizontal BPM gains

❏ 108 vertical BPM gains

❏ 80 horizontal corrector magnet gains

❏ 64 vertical corrector magnet gains

❏ 44 circuits (quadrupole gradients)

in total:M = 404 fit parameters

Measurement data:

❏ 108× 80 + 108× 64 data points included in the

response matrix

❏ 108 dispersion measurements

in total:N = 15660 data points
number of degrees of freedomN −M = 15256

χ2 = N −M ± σ, σ =
√

2(N −M)

Predictor for the statistical error ifN −M is asymptotically large.
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Best fit

❏ The predictor for the precision of the fit,σ(model −
measurement), reaches (almost) the noise level of the

BPMs

❏ Only sextupole

family S1 is

excited,

IS1 = 40A

❏ σ(model−

measurement) =

0.69µm

❏ Average of the

BPM σs:

horizontal:0.59µm,

vertical:0.54µm
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Analysis for different machine settings

Setting χ2

DOF
σ(model−meas.)

only S1 minimal 1.525 0.687µm

+ skews 1.479 0.672µm

user optics 3.975 0.746µm

+ skews 9.138 1.046µm

user optics w/ WLS/FFF 4.350 0.805µm

+ skews 8.019 1.002µm

❏ WLS: Wave Length

Shifter.

❏ FFF: Fast Feed

Forward (IDs).

❏ CQS: Skew

Quadrupoles.

❏ User optics: All

sextupoles

including harmonic

ones are at standard

settings.

❏ Average of the

BPM σs:

horizontal:0.59µm,

vertical:0.54µm
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BPM gains for different optics
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Vertical BPM gains for different optics (BESSY II)

❏ Fitting the BPM

gains substantially

improves the

quality of the fit.

❏ BPM gains deviate

considerably from

the nominal value.

❏ 〈gainx〉 ≈ 0.9
〈

gainy
〉

≈ 1.

❏ BPM readings

become nonlinear

for large orbit ex-

cursions.
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Modeling the impact of the WLSs

❏ Wave length shifters (WLS) focusonly vertically

→ quadrupoles cannot absorb this effect.

❏ Modeling of WLS as thin “cylinder lenses” focusing

only in the vertical plane.

❏ Wiggler: modeled as a sequence of dipoles.

Results – in comparison with an analysis only
employing quadrupoles:

❏ χ2 / DOF reduces by a factor of 50.

❏ σ(model − measurement) decreases by an order of
magnitude.
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Beta functions: design- and user optics
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Checking the predictions of the model

Chromaticity:
Determining of chromaticities for the user optics without WLS and

skew quadrupoles.

❏ measuredξx = 3.49 andξy = 3.95

❏ from the calibrierten model:
ξx = 3.89 und ξy = 3.86 (thin sextupoles) orξx =
3.70 undξy = 3.76 (sextupole with effective length.
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Determining emittances via simulations

Problem:
❏ small vertical emittances cannot be determined with

the diagnostic tools available.

Approach:

❏ Fit a skew quadrupole gradient at the location of

each sextupole.

❏ Get the emittances from the Ohmi-Envelope
(“coupled” optical functions).
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Minimizing the coupling – procedure

Approach:
Try to minimize the vertical dispersionand the vertical
emittance simultaneously employing the available skew
quadrupoles.

Caveats:
❏ At BESSY II only three skew quadrupoles are loca-

ted at dispersive sections.

→ Increasing the number of skew quadrupoles in

dispersive sections would help in minimizing the

vertical dispersion.

❏ The 15 skew quadrupoles are located only in about

one half of the ring.

→ A more even distribution could reduce the local

coupling at important locations.

❏ Four BPMs couple, only three buttons are functio-
nal.
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Determining the emittances: example
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     Emittance Ratio = 1.378447% 

❏ user optics

including all WLSs

and FFF,

CQS are off.

❏ the horizontal

emittanceǫx and

the verticalǫy vary

considerably along

the ring.

❏ WLS: Wave Length

Shifter

❏ FFF: Fast Feed

Forward (IDs)

❏ CQS: Skew Quads
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Coupling for given machine settings

Optics 〈ǫy〉 κ =
ǫy
ǫx

ηyRMS

[pm rad] [%] [mm]

only S1 minimal 14.3 0.22 5.40

only S1/S2 chrom. 0 18.0 0.28 6.78

user optics w/o WLS 74.6 1.13 7.66

user optics w/ WLS/FFF 93.3 1.38 9.91

user optics w/WLS/FFF 99.8 1.48 7.90

u. CQS

❏ The coupling is mainly induced by the orbit excursions
in the harmonic sextupoles and not by the settings of
the skew quadrupoles.

❏ Average vertical

emittance〈ǫy〉

❏ Coupling

κ = ǫy/ǫx

❏ Vertical Dispersion

(RMS)ηyRMS

❏ WLS: Wave Length

Shifter

❏ FFF: Fast Feed

Forward (IDs)

❏ CQS: Skew Quads
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Decoupling – iterative process
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❏ Iteration steps while

decoupling

❏ (top panel)

vertical emittance

❏ (bottom panel)

vertical dispersion

❏ user optics

including all WLSs

and FFF

❏ 15 CQS available.

❏ only three CQS in

dispersive regions
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Decoupling – comparing the results with
measurements

Criterion: reduction of the (Touschek) life time at large
beam current (I ≈ 300mA)

mode life time

3rd iteration 6.9 h

2nd iteration 7.0 h

1st iteration 7.7 h

CQS off 11.9 h

CQS standard 10.7 h

→ The life time can be reduced by 40%.

❏ All Sextupoles and

the WLS are at their

standard settings.

(user optics)

❏ The ellipse at the

beam profile moni-

tor assumes normal

orientation.
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Symmetrizing the optics

Objective:
❏ Restoring the dynamic aperture.

❏ Dialing in the reference optics in a reproducible
fashion.

Approach:

❏ Determine the normalized quadrupole gradients per

circuit.

❏ Changing the quadrupole settings according to

∆In
In

= −Kfit,n−Kref,n

Kref,n

employing offset channels at the quadrupole power
supplies.

Caveats:

❏ Quadrupoles at

BESSY II cannot be

powered individually.

❏ Q1D/T and Q2D/T:

16 quadrupole each are

ganged together.

❏ Q3D/T, Q4D/T and

Q5T can be powered

in pairs.
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Restoring the beta functions
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❏ User optics without

WLSs

❏ βiref : β function of

the reference.

❏ βisym: β function

of the symmetrized

optics

❏ βi0: β-function be-

fore symmetrizing.

Iteration Beta beat RMS

x y

0. 6.95% 4.39%

1. 0.80% 0.97%

2. 0.44% 0.22%
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Restoring the phase
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❏ user optics without

WLSs

❏ φiref : phase of the

reference.

❏ φisym: phase of the

symmetrized optics

(2nd iteration).

❏ φi0: phase before

symmetrizing.

Peter Schmid ACCELERATOR PHYSICS SEMINAR 13th December 2011



LOCO – Low alpha optics

❏ fs = 1.75 kHz.

❏ χ2/DOF =

5.625.

❏ σ(model−

meas.) =

1.34µm.

❏ BPM noise:

〈σx〉 = 0.9µm,

〈σy〉 = 0.4µm

❏ Orbit drifts during

the measurement.
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The Metrology Light Source

❏ Double Bend

Achromat Lattice

❏ two super cells

❏ Circumference

L = 48m.

❏ Nominal Energy

E = 629MeV.

❏ 8 Bending Magnets

LB = 1.2m.

❏ Emittance

ǫx = 120 nmrad.

Peter Schmid ACCELERATOR PHYSICS SEMINAR 13th December 2011



The Metrology Light Source
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Fit parameters for the MLS

❏ 28 horizontal BPM gains

❏ 28 vertical BPM gains

❏ 12 horizontal corrector magnets

❏ 16 vertical corrector magnets

❏ 24 quadrupole gradients

in total:M = 100 fit parameters

Measuring data:

❏ 28×12+28×16 data points included in the response

matrix

❏ 28 dispersion measurements

in total:N = 784
number of the degrees of freedomN −M = 684

χ2 = N −M ± σ, σ =
√

2(N −M)

Predictor for the statistical error ifN −M is asymptotically large.
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Fitting the focusing effect of the dipole

Dipole model ∆Frac.Tune
kHz

χ2

DOF

σ(mod.−mea.)
µm

a) RBEND [28.6, 233] 307.5 5.32

b) ditto, fit grad. [5.6, 0.2] 9.38 0.849

c) fint = 0.5 [14.4, 96.3] 67.1 2.48

d) ditto, fit fint [0.4, 4.2] 2.92 0.499

e) ditto, fit grad. [2.0, 3.4] 2.45 0.459

f) ditto, fit grad.

and fitfint
[1.5, 3.9] 2.24 0.441

❏ Fitting fringe field or the gradient of the bending ma-
gnet dramatically improves the quality of the LOCO
fit.

❏ Energy629MeV

❏ ∆Frac.Tune:

Deviation between

measured fractional

tune and the one

predicted by LOCO

❏ length of the dipole

1.2m
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Comparing LOCO’s predictions with
tune shift measurements
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❏ Both the dipole

gradient and the

fringe

field were varied

during the LOCO

analysis.

❏ χ2/DOF = 2.24

❏ σ(model−

meas.) = 0.44µm

❏ BPM noise:

0.33µm
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The undulator U180

The undulator U180:
❏ Electro magnetic undulator with a period length of

λP = 180mm.

❏ causes considerable tune shift at lower energies.

❏ modeled as a sequence of dipole magnets.

Compensation schemes investigated:

❏ opposite tune

❏ first tune then beta

❏ “alpha matching”

❏ tune bump

Energy ∆νy Beta beat

MeV max [%] RMS [%]

629 0.034 18 11

450 0.060 34 20

200 0.223 360 96
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Compensating the U180
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❏ Beam Energy is at

629MeV

mode current life time

mA h

standard user mode 135.0 13.9

undulator on 133.3 12.5

opposite tune 132.5 14.6

first tune then beta 131.5 12.6

alpha matching 130.6 14.0

tune bump 128.0 14.4
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Compensating the U180 at200MeV
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❏ Energy:200MeV.
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Results

❏ Optics calibration works reliably both at the MLS and

at BESSY II.

❏ Fitting almost down to the noise level of the BPMs was

achieved.

❏ Calibrated Model can be employed for realistic

simulations.

❏ An orbit correction program including the focusing ef-

fects of IDs was build upon the model.

❏ Decoupling and symmetrizing the optics was

successful at BESSY II.

❏ The focusing properties of IDs and the mitigation mea-
sures by the TFF were analyzed for the first time.
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