Status of optics modeling at the MLS and at BESSY II

Peter Schmid
Helmholtz Zentrum Berlin
\square LOCO
\square Status of optics' studies
\square Reducing the coupling
\square Symmetrizing the optics
\square Results

Linear Optics from Closed Orbits (LOCO)

Introduction

\square LOCO: Linear Optics from Closed Orbits.
\square Simulation programs (e. g. MAD) can compute response matrices for a given lattice.
\square LOCO uses the opposite approach: Attempt to reconstruct the linear optics from measured response matrices.
\square A successful LOCO analysis helps improving the understanding of the status of the storage ring.

Objective

Determining the
\square quadrupole gradients.
\square BPM gains.
\square calibration factors of the steerer magnets.
\square conversion factors of the skew quadrupole gradients.
\square BPM coupling.
\square quadrupole roll.
\square focusing properties of IDs.

Plot of a Response Matrix

\square Kick the beam horizontally/vertically and record the response at the BPMs.

HZB

 Zentrum Berlin
Response matrix of the model

Response matrix $M_{i j}$:
change in orbit at BPM i depending on the strength θ_{j} of the corrector magnet j

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=M\left[\begin{array}{l}
\theta_{x} \\
\theta_{y}
\end{array}\right]
$$

\square Vertical response matrix:

$$
M_{i j}=\frac{\sqrt{\beta_{i} \beta_{j}}}{2 \sin \pi \nu} \cos \left(\left|\phi_{i}-\phi_{j}\right|-\pi \nu\right)
$$

\square Horizontal response matrix:

$$
M_{i j}=\frac{\sqrt{\beta_{i} \beta_{j}}}{2 \sin \pi \nu} \cos \left(\left|\phi_{i}-\phi_{j}\right|-\pi \nu\right)-\frac{\theta_{j} \eta_{j}}{\alpha_{c} L_{0}} \eta_{i}
$$

Dispersive term in the horizontal plane:

- β_{i} beta function
- ϕ_{i} phase advance
- η_{i} dispersion
- ν tune
- α_{c} momentum compaction factor
- L_{0} length of the ring

The length of the orbit is determined by the RF frequency:
\rightarrow The change in path length caused by the kick has to be offset by
a change in energy keeping the revolution time constant.

Method

\square The parameters in the model are varied.
\square Goal: Minimizing the difference between measured and simulated response matrix.
Figure of merit

$$
\chi^{2}=\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\left(M_{i j}^{\text {meas }}-M_{i j}^{\text {model }}\right)^{2}}{\sigma_{i}^{2}}=\sum_{k=i, j}^{N} E_{k}^{2}
$$

The error vector is minimized by iteration. (SVD, Gauß-Newton method)

$$
\begin{aligned}
E_{k}^{\text {new }} & =E_{k}+\frac{\partial E_{k}}{\partial K_{l}} \Delta K_{l} \\
-E_{k} & =\frac{\partial E_{k}}{\partial K_{l}} \Delta K_{l}
\end{aligned}
$$

- σ_{i} : noise level of the BPMs
- E_{k} : error vector
$\square K_{l}$: fit parameter; gradient, gain, etc.
- $\sigma($ model - meas $):=$ standard deviation $\left(M_{i j}^{\text {model }}-M_{i j}^{\text {meas }}\right)$

The response matrix is not a linear function of the quadrupole gradients. Fit needs to be iterated until convergence occurs.

BESSY II

\square Double bend
 achromat lattice
\square eight super cells
\square Circumference $L=240 \mathrm{~m}$.
\square Nominal Energy $E=1.72 \mathrm{GeV}$.
\square Emittance
$\epsilon_{x}=6 \mathrm{~nm} \mathrm{rad}$.
\square Emittance
$\epsilon_{x}=4 \mathrm{~nm} \mathrm{rad}$
including super
conducting devices.

Fit parameters for BESSY II

$\square 108$ horizontal BPM gains
$\square 108$ vertical BPM gains
$\square 80$ horizontal corrector magnet gains
$\square 64$ vertical corrector magnet gains
$\square 44$ circuits (quadrupole gradients)
in total: $M=404$ fit parameters
Measurement data:
$\square 108 \times 80+108 \times 64$ data points included in the response matrix
$\square 108$ dispersion measurements
in total: $N=15660$ data points number of degrees of freedom $N-M=15256$

$$
\chi^{2}=N-M \pm \sigma, \quad \sigma=\sqrt{2(N-M)}
$$

Predictor for the statistical error if $N-M$ is asymptotically large.

Best fit

$\mathbf{H Z B}_{\text {Helmolter }}$
Zentrum Berlin

\square The predictor for the precision of the fit, σ (model measurement), reaches (almost) the noise level of the BPMs
\square Only sextupole family S 1 is excited, $I_{S 1}=40 \mathrm{~A}$

- σ (model measurement) $=$ $0.69 \mu \mathrm{~m}$
- Average of the BPM σ s:
horizontal: $0.59 \mu \mathrm{~m}$, vertical: $0.54 \mu \mathrm{~m}$

Analysis for different machine settings

- WLS: Wave Length Shifter.
- FFF: Fast Feed Forward (IDs).

Setting	$\frac{\chi^{2}}{D O F}$	σ (model - meas.)
only S1 minimal	1.525	$0.687 \mu \mathrm{~m}$
+ skews	1.479	$0.672 \mu \mathrm{~m}$
user optics	3.975	$0.746 \mu \mathrm{~m}$
+ skews	9.138	$1.046 \mu \mathrm{~m}$
user optics w/ WLS/FFF	4.350	$0.805 \mu \mathrm{~m}$
+ skews	8.019	$1.002 \mu \mathrm{~m}$

\square CQS: Skew Quadrupoles.

- User optics: All sextupoles including harmonic ones are at standard settings.
- Average of the BPM σ s: horizontal: $0.59 \mu \mathrm{~m}$, vertical: $0.54 \mu \mathrm{~m}$

BPM gains for different optics

\square Fitting the BPM gains substantially improves the quality of the fit.

- BPM gains deviate considerably from the nominal value.
$\square\left\langle\operatorname{gain}_{x}\right\rangle \approx 0.9$ $\left\langle\right.$ gain $\left._{y}\right\rangle \approx 1$.
\square BPM readings become nonlinear for large orbit excursions.

Modeling the impact of the WLSs

\square Wave length shifters (WLS) focus only vertically
\rightarrow quadrupoles cannot absorb this effect.
\square Modeling of WLS as thin "cylinder lenses" focusing only in the vertical plane.
\square Wiggler: modeled as a sequence of dipoles.
Results - in comparison with an analysis only employing quadrupoles:
$\square \chi^{2} /$ DOF reduces by a factor of 50 .
$\square \sigma$ (model - measurement) decreases by an order of magnitude.

Beta functions: design- and user optics

Design optics

User optics

Checking the predictions of the model

Chromaticity:
Determining of chromaticities for the user optics without WLS and skew quadrupoles.
\square measured $\xi_{x}=3.49$ and $\xi_{y}=3.95$
\square from the calibrierten model:
$\xi_{x}=3.89$ und $\xi_{y}=3.86$ (thin sextupoles) or $\xi_{x}=$ 3.70 und $\xi_{y}=3.76$ (sextupole with effective length.

Determining emittances via simulations

Problem:

\square small vertical emittances cannot be determined with the diagnostic tools available.

Approach:
\square Fit a skew quadrupole gradient at the location of each sextupole.
\square Get the emittances from the Ohmi-Envelope ("coupled" optical functions).

Minimizing the coupling - procedure

Approach:
Try to minimize the vertical dispersion and the vertical emittance simultaneously employing the available skew quadrupoles.

Caveats:
\square At BESSY II only three skew quadrupoles are located at dispersive sections.
\rightarrow Increasing the number of skew quadrupoles in dispersive sections would help in minimizing the vertical dispersion.
\square The 15 skew quadrupoles are located only in about one half of the ring.
\rightarrow A more even distribution could reduce the local coupling at important locations.
\square Four BPMs couple, only three buttons are functional.

Determining the emittances: example

Principal Axis of the Beam Ellipse

Vertical Emittance

Emittance Ratio $=1.378447 \%$
\square user optics including all WLSs and FFF, CQS are off.
\square the horizontal emittance ϵ_{x} and the vertical ϵ_{y} vary considerably along the ring.
\square WLS: Wave Length Shifter
\square FFF: Fast Feed Forward (IDs)
\square CQS: Skew Quads

Coupling for given machine settings

Optics	$\left\langle\epsilon_{y}\right\rangle$ $[\mathrm{pm} \mathrm{rad}]$	$\kappa=\frac{\epsilon_{y}}{\epsilon_{x}}$ $[\%]$	$\eta_{y \mathrm{RMS}}$ $[\mathrm{mm}]$
only S1 minimal	14.3	0.22	5.40
only S1/S2 chrom. 0	18.0	0.28	6.78
user optics w/o WLS	74.6	1.13	7.66
user optics w/ WLS/FFF	93.3	1.38	9.91
user optics w/WLS/FFF u. CQS	99.8	1.48	7.90

\square The coupling is mainly induced by the orbit excursions in the harmonic sextupoles and not by the settings of the skew quadrupoles.

- Average vertical emittance $\left\langle\epsilon_{y}\right\rangle$
\square Coupling $\kappa=\epsilon_{y} / \epsilon_{x}$
- Vertical Dispersion (RMS) $\eta_{y \text { RMS }}$
- WLS: Wave Length Shifter
- FFF: Fast Feed Forward (IDs)
- CQS: Skew Quads

Decoupling - iterative process

Decoupling - comparing the results with measurements

Criterion: reduction of the (Touschek) life time at large beam current ($I \approx 300 \mathrm{~mA}$)

mode	life time
3rd iteration	6.9 h
2nd iteration	7.0 h
1st iteration	7.7 h
CQS off	11.9 h
CQS standard	10.7 h

- All Sextupoles and the WLS are at their standard settings. (user optics)
\square The ellipse at the beam profile monitor assumes normal orientation.
\rightarrow The life time can be reduced by 40%.

Symmetrizing the optics

Objective:

\square Restoring the dynamic aperture.
\square Dialing in the reference optics in a reproducible fashion.

Approach:
\square Determine the normalized quadrupole gradients per circuit.
\square Changing the quadrupole settings according to

$$
\frac{\Delta I_{n}}{I_{n}}=-\frac{K_{\mathrm{fit}, n}-K_{\mathrm{ref}, n}}{K_{\mathrm{ref}, n}}
$$

employing offset channels at the quadrupole power supplies.

Caveats:
\square Quadrupoles at BESSY II cannot be powered individually.
Q Q1D/T and Q2D/T: 16 quadrupole each are ganged together.
\square Q3D/T, Q4D/T and Q5T can be powered in pairs.

Restoring the beta functions

\square User optics without WLSs
$\square \beta_{\text {iref }}: \beta$ function of the reference.
$\square \beta_{i \mathrm{sym}}: \beta$ function of the symmetrized optics
$\square \beta_{i 0}: \beta$-function before symmetrizing.

Iteration	Beta beat RMS	
	x	y
0.	6.95%	4.39%
1.	0.80%	0.97%
2.	0.44%	0.22%

Restoring the phase

\square user optics without WLSs
$\square \phi_{i \mathrm{ref}}$: phase of the reference.
$\square \phi_{i s y m}$: phase of the symmetrized optics (2nd iteration).
$\square \phi_{i 0}$: phase before symmetrizing.

LOCO - Low alpha optics

$\square f_{s}=1.75 \mathrm{kHz}$.
$\square \chi^{2} / D O F=$ 5.625.
$\square \sigma($ model meas.) = $1.34 \mu \mathrm{~m}$.
\square BPM noise: $\left\langle\sigma_{x}\right\rangle=0.9 \mu \mathrm{~m}$, $\left\langle\sigma_{y}\right\rangle=0.4 \mu \mathrm{~m}$
\square Orbit drifts during the measurement.

The Metrology Light Source

HZB

\square Double Bend Achromat Lattice
\square two super cells
\square Circumference $L=48 \mathrm{~m}$.
\square Nominal Energy $E=629 \mathrm{MeV}$.
$\square 8$ Bending Magnets $L_{B}=1.2 \mathrm{~m}$.
\square Emittance
$\epsilon_{x}=120 \mathrm{nmrad}$.

The Metrology Light Source

HZB
Zentrum Berlin

\square Double Bend
Achromat Lattice
\square two super cells
\square Circumference $L=48 \mathrm{~m}$.
\square Nominal Energy $E=629 \mathrm{MeV}$.
$\square 8$ Bending Magnets $L_{B}=1.2 \mathrm{~m}$.
\square Emittance
$\epsilon_{x}=120 \mathrm{nmrad}$.

Fit parameters for the MLS

$\square 28$ horizontal BPM gains
$\square 28$ vertical BPM gains
$\square 12$ horizontal corrector magnets
$\square 16$ vertical corrector magnets
$\square 24$ quadrupole gradients
in total: $M=100$ fit parameters
Measuring data:
$\square 28 \times 12+28 \times 16$ data points included in the response matrix
$\square 28$ dispersion measurements
in total: $N=784$
number of the degrees of freedom $N-M=684$

$$
\chi^{2}=N-M \pm \sigma, \quad \sigma=\sqrt{2(N-M)}
$$

Predictor for the statistical error if $N-M$ is asymptotically large.

Fitting the focusing effect of the dipole

Dipole model	$\frac{\Delta \text { Frac.Tune }}{\mathrm{kHz}}$	$\frac{\chi^{2}}{D O F}$	$\frac{\sigma(\text { mod. }- \text { mea.) }}{\mu m}$
a) RBEND	$[28.6,233]$	307.5	5.32
b) ditto, fit grad.	$[5.6,0.2]$	9.38	0.849
c) $f_{\text {int }}=0.5$	$[14.4,96.3]$	67.1	2.48
d) ditto, fit $f_{\text {int }}$	$[0.4,4.2]$	2.92	0.499
e) ditto, fit grad.	$[2.0,3.4]$	2.45	0.459
f) ditto, fit grad. and fit $f_{\text {int }}$	$[1.5,3.9]$	2.24	0.441

\square Fitting fringe field or the gradient of the bending magnet dramatically improves the quality of the LOCO fit.

- Energy 629 MeV
- Δ Frac.Tune:

Deviation between measured fractional tune and the one predicted by LOCO
\square length of the dipole 1.2 m

Comparing LOCO's predictions with tune shift measurements

The undulator U180

The undulator U180:
\square Electro magnetic undulator with a period length of

$$
\lambda_{P}=180 \mathrm{~mm} .
$$

\square causes considerable tune shift at lower energies.
\square modeled as a sequence of dipole magnets.

Compensation schemes investigated:

Energy	$\Delta \nu_{y}$	Beta beat	
MeV		$\max [\%]$	RMS [\%]
629	0.034	18	11
450	0.060	34	20
200	0.223	360	96

\square opposite tune
\square first tune then beta
\square "alpha matching"
\square tune bump

Compensating the U180

HZB

- Beam Energy is at 629 MeV

mode	current	life time
	mA	h
standard user mode	135.0	13.9
undulator on	133.3	12.5
opposite tune	132.5	14.6
first tune then beta	131.5	12.6
alpha matching	130.6	14.0
tune bump	128.0	14.4

Compensating the U180 at 200 MeV

Zentrum Berlin

Results

\square Optics calibration works reliably both at the MLS and at BESSY II.

Fitting almost down to the noise level of the BPMs was achieved.
\square Calibrated Model can be employed for realistic simulations.
\square An orbit correction program including the focusing effects of IDs was build upon the model.
\square Decoupling and symmetrizing the optics was successful at BESSY II.
\square The focusing properties of IDs and the mitigation measures by the TFF were analyzed for the first time.

