Seeding the SPARC Free electron laser amplifier

Luca Giannessi ENEA C.R. Frascati

On behalf of the SPARC collaboration

Outline

SPARC Overview

- SPARC Seeding Layout
- Low power seeding: amplification of harmonics generated in gas
 - Direct seeding
 - Single stage cascade 266nm -> 133nm
- High power seeding
 - High harmonics generation
 - Superradiant cascade

1.6 cells RF injector UCLA/BNL/SLAC design

Three TW S-band sections 100 – 200 MeV & Focusing solenoids (vel. bunching)

Consiglio Nazionale delle Ricerche

ALL IN

6 undulator modules (ACCEL Gmbh) 77 periods Period 2.8cm K max ~2.3

Consiglio Nazionale delle Ricerche

SASE experiments in 2010 ...

SINGLE SPIKE (Combination of e-beam chirp & taper)

Average over 100 spectra:

Energy 140 uJ (max 380 uJ)

Rel Linewidth 0.8% rms

TWINS (Two simultaneous spikes ~500 fs separation)

~40 nm

Seeded Operation

- Seed modes:
 - Low pulse energy seeding: 266 nm & 160 nm generated in gas
 - High pulse energy seeding: 400 nm in BBO crystal

Temporal alignment

Seeding - Beam parameters (3-4/6/2010)

Transverse emittances ~ 2 mm mrad

Low peak current, but relatively good beam quality

Seed @ 266 nm (Ar), ~50 nJ (±20nJ) 6 UM 266 nm

Spectrometer slit @ 5 um CCD saturated with nbw filter @ 266nm, 17% T

270

260

Comparison of current shape measured with RF deflector &

"gain" profile measured with cross correlation

(2010/06/04) Seed @ 160nm

Seed intensity & SASE too low to be detected at the spectrometer (< 1 nJ)</p>

Cascaded FEL seeded with harmonics generated in gas

Seed @ 266 nm / ~50 nJ

•5-4-3 UM tuned @ 266 nm / 1-2-3 UM tuned @133 nm

Output energy (@133nm) as a function of modulators/radiators

High intensity seeding of a single pass amplifier at SPARC

FEL Amplifier

Seed

Wavelength 400nm (II harmonic of Ti:Sa) Tuned laser energy in the range 0.2 - 9 uJ

High harmonics in an FEL (30/6/2010) Seed @ 400 nm, 5 uJ - 1 UM tuned at 400 nm - 5 UM tuned @ 200nm

- Higher charge (420 pC)
- Longer e-bunch
 - Larger emittances (3 mm mrad)

saturation position along the undulator

Bunching coefficients in the front side of the pulse

Expected very efficient generation of high order harmonics

harmonics

- Bunching peaks on the pulse front side at the higher order harmonics
- Short bursts of harmonic radiation
- Dynamics for non-linear harmonic evolution "faster" by the harmonic factor n. (i.e. $L_{g,n} \sim L_g / n$)
- Pulse structre preserved by the "solitary wave" behavior of this solution

High intensity seeding in a cascaded FEL at SPARC

Tuned laser energy in the range 0.2 - 9 uJ

FEL Amplifier

λ

Seed

Evolution of a superradiant pulse in a cascade

Exponential/superradiant growth

Modulator

e⁻ beam

Seed

The pulse at λ in the radiator is off resonance

Short pulse at λ/n by CHG

NEW superradiant pulse at λ/n

m m

Growth of the harmonic & harmonic bunching

No exponential gain !!

Radiator

(4/6/2010) Seed @ 400 nm 2 uJ - 1 UM tuned at 400 nm – 5 UM tuned @ 200nm

Indication of saturation at 200nm

Large energy jitter -> large energy fluctuations

18 µJ - Structure in the spectrum

Typical diffraction from vacuum pipe

202.5

Saturation effect ? – confirmed 11/12/2010

197.5

200 Wavelength [nm]

Higher harmonics in the cascade

100 nm

Shift of 10/12/2010 Preliminary data

66 nm (single shot)

50 nm

(wavelength indicates the center of the window Window width ~10nm)

Seeded SPARC spectral range

				_					
⇒	400	200	133.3	100	80	66.7	57.1	50	44.4
⇒	266.7	133.3	88.9	66.7	53.3	44.4	38.1	33.3	29.6
⇒	160	80	53.3	40	32	26.7	22.9	20	17.8
>	114.3	57.1	38.1	28.6	22.9	<u>1</u> 9	16.3	14.3	12.7

Fel generated harmonics

Harmonics

36.4

SPARC MAX ENERGY 178 MeV

Conclusions

- SPARC represents an ideal test bed for studying single pass FEL and FEL cascades in SASE and seeded mode
- Conventional lasers and FEL are merged in a single device
- In vacuum spectrometer extend the observed SPARC spectral range down to 36nm 540 nm

Observed pulse energy at different wavelengths (~ 50-60A / 178MeV)

Wavelength	500 nm	200nm	133 nm	66nm
Energy/pulse (~ 100 fs)	~100 µJ	~10 µJ	~1 µJ	~100 nJ

Future Experiments Multistage cascade The harmonic cascade HHG even harmonics amplification