SLICE EMITTANCE MEASUREMENTS USING AN ENERGY CHIRPED BEAM IN A DISPERSIVE SECTION AT PITZ

Yevgeniy Ivanisenko Accelerator Physiscs Seminar, 26 Jan 2010

TALK OUTLINE

Introduction to PITZ

- Photo injector characterization
- PITZ diagnostics

> Projected and slice emittance

- Solenoid compensation
- Simulation results

> Slice emittance measurements at PITZ

- PITZ setup for slice emittance
- Results

Conclusions

HIGH-BRIGHTNESS PHOTO INJECTOR

Charged particle source brightness

$$B \propto \frac{Q}{\varepsilon_x \varepsilon_y \varepsilon_z}$$

High-brightness electron source transverse emittance requirement for the European X-FEL

- < 0.9 mm mrad projected emittance after the gun section</p>
- < 1.4 mm mrad slice emittance in front of the undulator section</p>

PITZ optimizes the injector setup by minimizing transverse projected emittance.

PHOTO INJECTOR

PHOTO INJECTOR LASER

PITZ DIAGNOSTICS

> Beamline 1.7

- Beam momentum distribution, bunch length
 - Three dispersive sections
 - Streak readouts
- Beam trajectory, size, transverse emittance
 - Screen stations
 - EMSYs
 - Quads

EMITTANCE MEASUREMENT SYSTEM

- EMSY emittance measurement system:
 - Contains slit masks for both transverse plains
 - Slit position is scanned along the transverse beam size
 - Reference beam size measurement at EMSY

TRANSVERSE EMITTANCE DEFINITION

Normalized transverse projected emittance

PITZ

SOLENOID SCAN

Charge density changes along bunch. That leads to a twisting of the transverse phase space along z. 6D emittance does not change. Projected rms emittance increases.

PITZ

EXPERIMENTAL PROJECTED EMITTANCE RESULTS

Projected emittance VS main solenoid current at the position of EMSY1

SLICE EMITTANCE

Slice emittance – transverse emittance of a longitudinal fraction of a bunch.

$$\varepsilon_{rms}(\Delta z) = \beta \gamma \sqrt{x (\Delta z)^2} \cdot \overline{x' (\Delta z)^2} - \overline{x (\Delta z)} \cdot x' (\Delta z)^2$$

> Average slice emittance <= Projected emittance</p>

BEAM SLICING IN DISPERSIVE SECTION

- > Off-crest acceleration correlates Z to Pz
- Dispersive element converts the Pz distribution into a Y distribution
- Emittance of a bunch part that passes through the slit after the dispersion is measured

SLICE EMITTANCE SETUP AT PITZ

- Produce an electron bunch in the gun section
- > Accelerate off-crest in the booster introduce momentumlongitudinal position correlation.
- > HEDA1 dipole converts the momentum distribution in a transverse distribution. A slit on the dipole output selects a part of the bunch along the dispersive direction.
- Transverse emittance of the bunch fraction is measured using the quad scan or the slit scan at EMSY2.

TEMPORAL RESOLUTION

Slicing procedure can be a part of the image processing. Temporal resolution is affected by

- Phase off-crest
- Infinitely narrow slice in momentum corresponds to a finite width longitudinal slice due to the local momentum spread.
- Beam size at the dipole entrance

EMITTANCE MEASUREMENT PROCEDURE

> Slit scan

- Phase space distribution
- Low intensity, only multi-bunch measurements

> Quad scan

- Signal to noise is high, single bunch measurements
- The hardware has no sensitive mechanics

RESULTS

> 20090904

- Laser: Flat top FWHM=23.5ps, Laser spot diameter 1.5mm, 1nC
- Booster phase = -50 deg off-crest
- Slit scan, rms temporal resolution is 1ps

> Error bars include only statistics over several frames taken

Simulation result compared to the slit scan slice emittance and projected emittance

SICE EMITTANCE RESULTS

> 20091018

- Laser: Gaussian Lrms=6ps, Laser spot diameter 1.5mm, 1nC
- Booster phase = -50 deg off-crest
- Quad scan, rms temporal resolution is 1ps

> Simulation represents sharp edge slicing . Slice width is 1ps.

SLICE COVARIANCE

Covariance is a merit of slice phase space orientation

Yevgeniy Ivanisenko | Slice Emittance | 26.01.2010 | Page 19

PITZ

AVERAGE SLICE EMITTANCE

Summary plot of average slice emittance vs main solenoid current. As a reference the projected emittance curve is presented.

OFF-CREST AND ON-CREST

- What is different about average slice emittance value of a beam accelerated on-crest and off-crest?
- Simulation shows average slice emittance versus Imain for an on-crest and an off-crest beams

AVERAGE SLICE EMITTANCE VS PROJECTED EMITTANCE

Simulation describes how minimum average slice emittance and minimum projected emittance change along the setup downstream from the gun.

CONCLUSIONS

- > The slice emittance diagnostics is in operation at PITZ
- > Two emittance measurement methods are applied
 - Quad scan delivers higher signal to noise
 - Both methods are compared for consistency
- Two consistent data sets were taken and analyzed and have shown good consistency with simulations:
 - Flat-top laser pulse FWHM 23ps with the slit scan
 - Gaussian pulse sigma=6ps with the quad scan, and the slit scan for one solenoid current
- Slice emittance measurement can be correlated to the laser pulse structure. Momentum to time calibration can be done using a longitudinal phase space measurement in HEDA1
- Comparison of different laser pulse shapes with a help of the slice emittance diagnostics is less sensitive to the booster and measurement point position.
- Optimization criterion of minimum average slice emittance off-crest does not correspond to the optimized projected emittance on-crest. Nevertheless minimum average emittance can be considered as a merit of beam quality

PLANS FOR THE DIAGNOSTICS

Different laser shapes

- Up to now quad scan only with long Gaussian

> Thermal emittance

- It might allow measurements of thermal emittance with a long flat top laser pulse.
- CDS Booster
 - Higher energy gain
 - Stable operation

Average slice emittance

PITZ

Average slice emittance

Average slice emittance

PITZ