

Operational Experience with the LHC and SPS Tune Resonance Phenomena

Tobias Baer DESY Accelerator Physics Seminar *February, 9th 2010*

Content

NUMP 10

1. CERN Accelerator Complex

2. Operational Experience with the LHC

3. Tune Resonance Phenomena in the SPS and Machine Protection via Fast Position Interlocking UΗ

1. CERN Accelerator Complex

2. Operational Experience with the LHC

3. Tune Resonance Phenomena in the SPS and Machine Protection via Fast Position Interlocking

CERN Accelerator Complex

AD Antiproton Decelerator CTF-3 Clic Test Facility CNCS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine Device LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight

February, 9th 2010

DESY Accelerator Physics Seminar

UΗ

Large Hadron Collider

- Ring circumference: 26.7 km
- Collision Energy: 2 · 7 TeV
- 4+2 Experiments: ATLAS, CMS, ALICE, LHCb and TOTEM, LHCf

1. CERN Accelerator Complex

2. Operational Experience with the LHC

3. Tune Resonance Phenomena in the SPS and Machine Protection via Fast Position Interlocking

2. Operational Experience with the LHC

- LHC incident
- LHC run 2009
- Plans for 2010

LHC startup 2008

LHC startup: September 10th 2008

Both beams around the ring (within few hours)

Following days:

- All base instrumentation operational (BPMs, BLMs, Tune, BCTs)
- Beam 2 captured by RF
- Beam lifetime > 1h

September 19th Incident

A DAW & WALL

UΗ

iii

September 19th Incident

UΗ

iii

Bus Bar

Event Sequence on Sept. 19th

- Last commissioning step of main dipole circuit in sector 34: ramp to 9.3 kA (5.5 TeV)
- At 8.7 kA electrical fault in bus bar between dipole and quadrupole
 - Local resistance: ~220 n Ω (nominal 0.35 n Ω)
- 400MJ out of 600MJ stored in the circuit were dissipated in cold-mass and electrical arcs
- 6 tons of helium were released

LHC repairs in detail

New longitudinal restraining system for 50 quadrupoles

Almost 900 new helium pressure release ports

6500 new detectors and 250km cables for new Quench Protection System

Ж

LHC run 2009

Startup Nov. 20th 2009

Beam position

Also Day 1: Capture of both beams with RF

February, 9th 2010

DESY Accelerator Physics Seminar

Startup Nov. 20th 2009

SALV 2023

UΗ

Day 4: First collisions at 2.450 GeV

Day 4: 1st Ramp to 560 GeV Day 11: 3rd Ramp to 1.18 TeV

Tune = Number of betatron oscillations per machine revolution

Tune = Number of betatron oscillations per machine

Tune = Number of betatron oscillations per machine revolution

Tune = Number of betatron oscillations per machine

Ramp to 1.18 TeV

1255 SVA0/ 9

CMS Solenoid

Day 10: Switching on CMS Solenoid. Orbit difference with/without Solenoid on

Momentum change: dp/p = -0.1 ‰

February, 9th 2010

DESY Accelerator Physics Seminar

LHC measures influence of tidal forces 10 days after first beam

Milestones in 2009 run

Date	Day	Achieved
Nov 20	1	Both beams circulating. Key beam instrumentation working.
Nov 23	4	First collisions at 450 GeV. First ramp (reached 560 GeV).
Nov 30	11	Ramp to 1.18 TeV.
Nov 30	11	Experiment solenoids on.
Dec 04	15	Aperture measurements finished. LHCb and ALICE dipoles on.
Dec 05	16	Machine protection (Injection, Beam dump, Collimators) ready for safe operation with pilots.
Dec 08	19	Ramp colliding bunches to 1.18 TeV
Dec 14	25	Collisions with STABLE BEAMS, 16 on 16 bunches at 450 GeV, Intensity > 10 ¹⁰ protons per bunch
Dec 16	27	Ramp 4 on 4 bunches to 1.18 TeV. Squeeze to $\beta^*=7$ m.

UΗ

iii

Plans for 2010

Plans for 2010

Date	Activity		
Feb 16	Injection Test		
Feb 22	Start recommissioning with Beam		
End Feb	Ramp to 3.5 TeV.		
Beg. Mar	Commission Squeeze		
Mid Mar	Stable, Save Beams at 3.5 TeV		
	Stepwise Increase Intensity, each step followed by extended running period (estimate: up to ≈7·10 ¹³ protons during 2010)		
	Ramp to Higher Energies in 2013 (warm up of machine needed)		

UH

fift

1. CERN Accelerator Complex

2. Operational Experience with the LHC

3. Tune Resonance Phenomena in the SPS and Machine Protection via Fast Position Interlocking

3. Tune Resonance Phenomena in the SPS and Machine Protection via Fast Position Interlocking

- Incident 27.06.2008
- Integer Tune resonances
 - Orbit Resonance
 - Dispersion Resonance
 - Supersymmetric Resonances
- Machine Protection

Super Proton Synchroton

- Commissioned in 1976
- Ring circumference: 6.9 km
- Top Energy: 450 GeV
- Intensity: up to 5.10¹³ protons
- Beam Energy: up to 2.5 MJ
 - Tevatron: 2 MJ, LHC (nominal) 362MJ

UΗ

Super Proton Synchroton

- Commissioned in 1976
- Ring circumferenc
- Top Energy: 450 G
- Intensity: up to 5.10¹³ pr
- Beam Energy: up to 2.5 MJ
 - Tevatron: 2 MJ, Lł

UΗ

SPS Incident 27.06.2008

Beam impact of high intensity beam (about 3.10¹³ protons @ 400 GeV)

Beam impact of high intensity beam (about 3.10¹³ protons @ 400 GeV)

Event Sequence on June 27th

- After injection of 2 high intensity batches a failure in the main timing system occurred
- The beam was accelerated to 400GeV but not extracted
- The magnets were ramped down again
- The tune shifted towards an integer tune resonance and the beam punctured the vacuum chamber in the vertical plane (dipole current corresponding to 399.05 GeV)

• Influence of dipolar error on Closed Orbit: (e.g. quadrupole misalignments)

$$x(s) = \frac{\sqrt{\beta(s)}}{2\sin(\pi \cdot Q)} \oint_{s} F(\bar{s}) \sqrt{\beta(\bar{s})} \cdot \cos(\varphi(\bar{s}) - \varphi(s) - \pi Q) d\bar{s}$$

 Influence of dipolar error on Closed Orbit: (e.g. quadrupole misalignments)

 Influence of dipolar error on Closed Orbit: (e.g. quadrupole misalignments)

Q_H, Q_V = integer => diverging closed orbit

Linear Decrease of Horizontal Tune

Orbit at Integer Resonance

Orbit Resonances

Horizontal RMS closed orbit

UΗ

iii

Linear Decrease of Horizontal Tune

Orbit at Integer Resonance

• **Dispersion:** $\Delta x(s) = D(s) \cdot \frac{\Delta p}{p}$

(generated by dipole magnets, transforms like orbit)

• **Dispersion:** $\Delta x(s) = D(s) \cdot \frac{\Delta p}{p}$

(generated by dipole magnets, transforms like orbit)

• **Dispersion:** $\Delta x(s) = D(s) \cdot \frac{\Delta p}{p}$

(generated by dipole magnets, transforms like orbit)

• **Dispersion:** $\Delta x(s) = D(s) \cdot \frac{\Delta p}{p}$

(generated by dipole magnets, transforms like orbit)

• $Q_H, Q_V = integer => diverging dispersion$

Horizontal Dispersion

February, 9th 2010

DESY Accelerator Physics Seminar

Horizontal RMS Dispersion

Machine Protection

SPS Current of Focusing Quadrupoles (QF1) in case of Power Converter failure @ 400GeV

Fast Position Interlock

- Original Design:
 - 6 stripline coupler BPMs
 - new Hardware using logarithmic amplifiers (large dynamic range)
 - Turn-by-Turn Acquisition and Interlock Processing via FPGA
 - Post Mortem Acquisition (1024 turns)

Н

New Hardware vs. Traditional Hardware (vertical orbit bump)

Consistency Check: Vertical 3π orbit bump at BPCE 618

New Hardware vs. Traditional Hardware (3π vertical orbit bump)

- Compare current position with moving average of last 100 turns
- Interlock if difference larger 3mm
- Outlier detection

- Compare current position with moving average of last 100 turns
- Interlock if difference larger 3mm
- Outlier detection

Problem: Injection Oscillations

SPS Injection Oscillation

- Compare current position with moving average of last 100 turns
- Interlock if difference larger 3mm
- Outlier detection

Problem: Injection Oscillations

Probable solution:

SPS Injection Oscillation

February, 9th 2010

Orbit at Integer Resonance

Orbit at Integer Resonance

Offline test: 428/428 tune resonances triggered, 0/554 normal orbits triggered

in-situ tests continue next week

February, 9th 2010

DESY Accelerator Physics Seminar

Summary UH

- (Integer) Tune Resonance are a challenging Machine Protection Issue
 - (cp. complete beam loss in 3 turns)
- Protection with Turn-by-Turn Position Interlock

 When you are fast enough you can cross every resonance

• Be aware of **Supersymmetric Tune Resonances**

Thank you for your Attention

Tobias Baer

CERN BE/OP Tobias.Baer@cern.ch TBaer@physnet.uni-hamburg.de Office: +41 22 76 75379

February, 9th 2010

DESY Accelerator Physics Seminar

Backup slides

Global protection of the bus-bar and bus-bar joints (splices) between magnets.

Protection threshold 1 V (160 V inductive voltage during ramp). Bus-bar must cope with 100 second discharge time of circuit.

DESY Accelerator Physics Seminar

 \approx 60% of the chambers

 \approx 20% of the chambers

Cleaning of Beam Screen

UΗ

Triplet Movement

12µm triplet misalignment => beam oscillation amplitude 0.3mm (in arc)

UΗ

Triplet Movement

$12 \mu m$ Misalignment of MQXB.A2R5

DESY Accelerator Physics Seminar

Time resolved Hump structure

#924 - fast hump movement - LHC-X - 2009-12-16 16:35:10

Hump: Fast frequency shifting oscillation with mean drifting slowly between 0.25 and 0.32

DESY Accelerator Physics Seminar

Dispersion Resonance

MD MPS4: Horizontal Dispersion 15 Measurement Qh= 24.37 0 horizontal Dispersion [m] Simulation Qh= 24.51 10 5 0 -5 -10 1000 3000 2000 4000 5000 6000 7000 0 s [m] **MD MPS4: Horizontal Dispersion** 15 Measurement Qh= 24.27 . horizontal Dispersion [m] 10 Simulation Qh= 24.41 5 0 -5 -10 -15 1000 2000 3000 4000 5000 6000 7000 0 s [m]

Dispersion Resonance

MD MPS4: Horizontal Dispersion

Dispersion Resonance

UH **Dispersion Resonance** iii

Recombination Dipole RD1 OFF, FMCM active

Recombination Dipole RD1 OFF, FMCM masked (inactive)

Beam Losses

Recombination Dipole RD1 OFF, FMCM masked (inactive)

Power Converter

N/A/ / 0

Recombination Dipole RD1 OFF, FMCM masked (inactive)

Power Converter

ESS VAL / C

Recombination Dipole RD1 OFF, FMCM masked (inactive)

courtesy of Rudiger Schmidt

Particlelosses for QH decrease of 1.44e-003 per turn at QH = 26

Correlation between BPCE618.H and BPCE618.V (horizontal orbit bump)

