Machine Protection for FLASH and the European XFEL

Lars Fröhlich

Disputation – May 29, 2009

Overview

Machine Protection for FLASH and the European XFEL

- Introduction
- Dark current transport at FLASH
- Undulator Damage
- Machine protection system for FLASH
- Machine protection system for the European XFEL

Machine protection is the sum of all measures that protect an accelerator and its infrastructure from the beam.

What is it not?

- Personnel or radiological protection—protecting people from harm.
- Technical interlock-protecting devices from damage by arbitrary malfunctions.

Why do we need it?

- High stored energy in circular accelerators: Tevatron 1.3 MJ, HERA 2 MJ, LHC 362 MJ
- High average power in linear accelerators: FLASH 90 kW, European XFEL 600 kW, SNS 1.4 MW, JLab FEL 1.5 MW, ILC 11 MW

Energy stored in LHC beams can melt 1 ton of copper.

Power used for electron beam welding: 5-100 kW

FLASH - Free-Electron Laser in Hamburg

Time Structure of the FLASH Electron Beam

time

bunch charge: ~1 nC macropulse length: ≤800 µs

Current parameters

repetition rate:	5 Hz
bunch frequency:	≤1 MHz
\rightarrow bunches per pulse:	≤800
\rightarrow average power:	\leq 5 kW

200 ms

charge

macropulse

1 µs

Design parameters

repetition rate: bunch frequency:	10 Hz 9 MHz	
→bunches per pulse:→average power:	≤ 7200 ≤ 90 kW	

Dark Current Transport at FLASH

Radioactivation by Dark Current

The FLASH RF Gun

•

Field Emitters in the RF Gun Cavity

field map courtesy of Jacek Sekutowicz

Dark Current Transport in the RF Gun Cavity

Transmission to ACC1

Percentage of particles transported to ACC1 (2.6 m from cathode)

	Emitter	all	≥ 1 MeV/c	≥ 2 MeV/c
A	Photocathode	20.99	20.64	19.61
В	Plug surface	1.17	0.85	<< 0.01
С	Plug border	0.07	0	0
D	Backplane border	0.41	0	0
E	Iris upstream	0	0	0
F	Iris downstream	0	0	0
G	Cavity exit	0	0	0

Overview

Location of major dark current losses:

- behind rf gun
- bunch compressor 2
- bunch compressor 3
- transverse collimators

dark current power deposition (10 Hz, 800 µs pulse length)

Simulation parameters:

- final beam energy: 980 MeV
- ACC1 rf phase: 8° off-crest
- ACC2—3 rf phase: 20° off-crest

Undulator Damage

Radiation Damage to Undulator Magnets

- Nd₂Fe₁₄B magnets lose magnetization when irradiated
- literature: relative demagnetization rate 10⁻⁸/Gy (gammas) - 10⁻⁴/Gy (fast neutrons)

Relative demagnetization: 5·10⁻⁷/Gy

	Dose (kGy)	ΔB/B (%)
2004-08-13	0	0
2006-03-21	37	-2.3
2007-09-29	61	-3.1

Simulations indicate **10% FEL power loss** for **0.5% (periodic) field loss** For 10 years undulator lifetime: **5 Gy/d** dose budget

Skupin et al., Undulator demagnetization due to radiation losses at FLASH, *Proc. EPAC 2008*, pp. 2308-2310

Undulator Beamline Model

Beam Loss in the Undulator

Worst case scenario:

- Loss of a bunch at the exit of undulator 1
- Bunch strikes the bottom of the vacuum chamber

Parameters:

- 1 GeV
- 1 nC/bunch
- 1 bunch/macropulse
- 10 Hz

Beam Loss in the Undulator

- Dose rate around 1 kGy/h in an extended range (1 bunch, 10 Hz)
- FLASH design parameters: 7200 bunches, 10 Hz → 2 kGy/s

To stay within 5 Gy/d with 7200 bunches, local beam loss has to be limited to

3·10⁻⁸ (relative)

180 electrons per bunch

FLASH Machine Protection System

Machine Protection System Overview

Beam Interlock System (BIS)

Beam Interlock System: Beam Mode

Beam Interlock Concentrators (BICs)

- Custom FPGAcontrolled devices
- Function: logical OR for alarm signals
- Interruption of bunch production within the current macropulse

Beam Loss Monitors (BLMs)

Algorithms for the Setup of the BLM System

- Passive configuration plausibility check
- Active cable test
- Input offset setup
- ADC sampling point setup
- Integrator timing setup
- ADC offset setup
- BLM calibration by induced beam loss
- BLM calibration by wirescan
- &c.

BLM Calibration by Wirescan

Goals:

- Make readings comparable between left and right beam loss monitors
- Make readings comparable between BLMs in different undulator segments

top view on FEL undulator segments

BLM Calibration by Wirescan

An MPS for the European XFEL

The European X-Ray Free-Electron Laser (XFEL)

Monitoring of critical components

• Ensure that valves and magnets are set up correctly to guide the beam to a dump

Power limits

• Limit the number of bunches for startup, to protect screens, ...

Alarm cutoffs

React immediately to beam losses
& reduce the number of bunches dynamically for following macropulses

Example Topology

Conclusion

Conclusion

- Superconducting linacs can transport dangerously powerful beams
- Permanent magnet undulators are among the most vulnerable components
- Beam losses must be controlled tightly (FLASH design: 3.10⁻⁸)
- Dark current can be problematic
- Good passive & active protection is required
- FLASH machine protection system is fully functional & reliable
- XFEL machine protection system will be more complex, but concepts & first prototypes are ready

Acknowledgements

Bolko Beutner · Thomas Bruns · Bart Faatz Klaus Flöttmann · Christopher Gerth · Max Görler Gerhard Grygiel · Peter Göttlicher · Abdallah Hamdi Olaf Hensler · Sven Karstensen · Gero Kube Timmy Lensch · Florian Löhl · Sascha Meykopff Bastian Michalek · Dirk Nölle · Eduard Prat Jörg Roßbach · Bernhard Schmidt · Rüdiger Schmidt Frank Schmidt-Föhre · Jacek Sekutowicz Siggi Schreiber · Martin Staack · Henrik Tiessen Matthias Werner · Kay Wittenburg

