Juliane Rönsch Universität Hamburg / DESY

Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF-electron source for the European X-FEL

Contents

- Introduction & Motivation
- PITZ (Photoinjector Test facility DESY, Zeuthen site)
- Example for the longitudinal phase space distribution
- Devices for longitudinal phase space measurement at PITZ
- Measurements and simulations of longitudinal phase space at PITZ
- Summary

Introduction

Free Electron Laser produces light with the following properties:

- short wavelength (XFEL: down to 0.1 nm, FLASH: down to 6 nm) -> small structures
- coherent -> holography, imaging of single nanoscale objects
- short pulses (≤ 100 fs) -> fast processes
- high peak brightness ->

investigate matter under extreme conditions

Introduction

To obtain a highly brilliant light pulse a high energy electron beam with the following properties is required:

- a high peak current, means a high charge within a short bunch length (in the range of 100 fs)
- a small energy spread
- a small transverse emittance

FLASH layout

Motivation

To obtain a highly brilliant light pulse a high energy electron beam with the following properties is required:

- a high peak current, means a high charge within a short bunch length (in the range of 100 fs)
- a small energy spread
- a small transverse emittance

FLASH layout

PITZ: Photoinjector test facility at DESY, Zeuthen site

- Test, analyse and optimize electron sources for FELs
- Development of diagnostics to analyse the electron bunch properties
- Comparison of measurements and simulations to prove the understanding of the beam dynamics in the photoinjector

PITZ: RF gun

PITZ: electron beam line

PITZ diagnostics of electron beam properties

Contribution to PITZ diagnostics diagnostics of longitudinal bunch properties

Simulated longitudinal phase space distribution

projections of longitudinal phase space distribution:

- longitudinal momentum distribution
- temporal distribution

area of longitudinal phase space: longitudinal emittance ϵ_{z}

$$\varepsilon_{z} = \sqrt{\langle (\Delta p_{z})^{2} \rangle \langle (\Delta z)^{2} \rangle - \langle \Delta p_{z} \Delta z \rangle^{2}}$$

Simulated longitudinal phase space distribution

Simulated longitudinal phase space distribution

-<u>0.1 nC</u> -60 MV/m

-0.5 m after the cathode

-phase of max.

momentum gain

 $-B_{main} = 176 \text{ mT}$

-cathode laser:

- long.: flat-top FWHM : 20 ps rise time : 2 ps
- transv.: flat-top
 Ø: 2 mm

Reduction of the charge for 1 nC to 100 pC causes a reduction of space charge forces and thus momentum spread, slice momentum spread (<1 keV/c along the whole bunch) and bunch length

Devices for measurements of longitudinal phase space distributions at PITZ

- Temporal charge distribution:
 - Silica aerogel (Cherenkov radiator) or OTR (optical transition radiator) as radiators and a streak camera
 - RF deflector
- Beam momentum distribution:
 - dipole magnet and a view screen
- Longitudinal phase space distribution:
 - · dipole magnet, radiator and streak camera
 - RF deflector and dipole magnet

Devices for measurements of longitudinal phase space distributions at PITZ

- Temporal charge distribution:
 - Silica aerogel (Cherenkov radiator) or OTR (optical transition radiator) as radiators and a streak camera

Simulated temporal charge density distribution (1 nC)

Devices for measurements of longitudinal distributions at PITZ

- Temporal charge distribution:
 - Silica aerogel or OTR as radiators and a streak camera
 - electron bunch produces a light pulse with similar temporal distribution by the Cherenkov effect or transition radiation
 - light transport
 - streak camera measurement

Devices for measurements of longitudinal distributions at PITZ

The number of photons produced by silica aerogel (up to 40 MV/m) is several orders of magnitude higher than the number of photons produced by an OTR-screen.

Optical transmission line

The optical system is contains telescopes consisting of achromatic lenses.

- The optical system limits the temporal resolution due to dispersion.
- The temporal resolution can be reduced by using narrow bandwidth wavelength filter, but at the expense of the reduced number of photons.
- A system consisting of reflective optics is under development.

Influence of the streak camera (C5680)

resolution is limited by:

- streak camera slit width and space charge
 - slit width of 100 μ m: Δ t = 1.75 ps
 - correction: deconvolution (signal without RF-field)

• RF jitter and jitter of signal arrival time

(due to the overlap of several measurements)

• diff. momentum of photo electrons for diff. wavelength

Temporal resolution

Limitation of the temporal resolution by the different Cherenkov radiators

- n : index of refraction
- d : thickness

Limitation of the temporal resolution by the optical system using an optical transmission filter of 550 nm with 10 nm bandwidth and a streak camera slit width of 0.1 mm

slit width) is about 4 ps FWHM

21

Devices for the measurement of the longitudinal phase space distribution at PITZ

• Beam momentum distribution:

• dipole magnet and a view screen

simulated longitudinal momentum distribution (1 nC)

Devices for the measurement of the momentum distribution at PITZ

Devices for the measurement of the longitudinal phase space distribution at PITZ

- Longitudinal phase space distribution:
 - dipole magnet, radiator and streak camera

simulated longitudinal phase space distribution (1 nC)

Devices for the measurement of the longitudinal phase space distribution at PITZ

Example for a spectrometer magnet (first high energy dispersive arm - HEDA1)

Example for a spectrometer magnet (first high energy dispersive arm - HEDA1)

The longitudinal phase space distribution is affected by:

→ These properties and effects are coupled.

Measurements of longitudinal phase space distribution

• Dependence on bunch charge:

- $p_z \& p_{rms}$ for different gun phases after the gun
- $\sigma_{_{z}}$ after the gun
- longitudinal phase space distribution after the gun

• <u>Dependence on increased beam energy</u>

- p_z vs. gun gradient
- p_z vs. booster gradient
- $p_z \& \sigma_z$ vs. gun and booster phase
- Dependence on laser properties
 - $\sigma_{_{Z}}$ VS. $\sigma_{_{xy\text{-laser}}}$
 - long. phase space distribution for diff. temp. laser distribution

Momentum measurement (influence of gun phase and bunch charge)

- Gun gradient: ~40MV/m
- The dependence of the mean momentum on the launch phase is similar for different charge
 - highest mean momentum: 4.8 MeV/c at launch phase: of about 37°
- minimum momentum spread: 30 pC: 5 keV/c at launch phase: of about 35° 1 nC: 13 keV/c at launch phase: of about 30°
- for phase from 80° to 100° the momentum distribution is cut by the screen
- 1nC: space charge increases momentum spread
- 30 pC: phase of max. momentum gain is close to phase of min. momentum spread
 → space charge forces small

Bunch length measurement (influence of charge)

Simulations of the longitudinal phase space at different long. positions and charges

60

40

20

Astra

measured

t/ps

modulations in the longitudinal phase space distribution
small charges: strong modulations appear in the longitinal phase space distribution

Measurements of the longitudinal phase space distribution at different charges

Momentum measurement (influence of gun gradient)

- max. mean momentum scales linear with the gradient (for $E_{cath} > 20 \text{ MV/m}$)
- for E < 18 MV/m: phase of max. mean momentum gain = 0°
- for E < 6 MV/m: no acceleration

Momentum measurement (influence of booster gradient)

TESLA booster (9 cell copper cavity)

field distribution is only roughly knownthe average power is limited by the cavity cooling

The points display measurementon different days during an measurement periode for:

- gun and booster phase of max. momentum gain

Momentum measurement (influence of gun & booster phase)

Bunch length downstream the booster cavity

· Flat-top laser

strong off-crest operation:

- balistic bunching
- low beam energy \rightarrow space charge \rightarrow transverse emittance growth

Bunch length measurements

- 1 nC - 60 MV/m - laser: • long.: gaussian

FWHM : 2 ps

transv.: flat-top
 Ø : variable

space charge dominated beam

coupling of the transverse beam size and the longitudinal bunch properties

Influence of laser temporal modulations on longitudinal phase space distribution (simulations for old cathode laser system)

^{- 1} nC

- z = 8 m
- gun gradient: 60 MV/m
- gun & booster phase of max. momentum gainbooster gradient (CDS):

28.85 MV/m

Laser:

- transv.: flat-top Ø : 2 mm

The modulations in the temporal laser distribution introduce modulations in the longitudinal phase space and momentum distribution.

Influence of laser temporal modulations on longitudinal phase space distribution (new cathode laser system)

modulations in the temporal laser distribution translate into modulations in themomentum distribution

Summary

- A method to measure the longitudinal phase space distribution and its projection used at PITZ was presented.
- The limit of the resolution of this method was analysed:
 - the major limitation of the temporal resolution is the optical system.
 - an optical system of reflective optics is under development.
- The spectrometer dipole magnets were optimized for high momentum resolution.
- The influence of space charge force on the longitudinal phase space distribution was studied in dependence on the bunch charge
- •The impact of the increased gun gradient onto the longitudinal phase space distribution has been investigated. Bunch length dependence by off-crest booster operation was studied.
- A transformation of longitudinal modulations of the laser into momentum modulations has been experimentally observed and can be generally reproduced by simulations.
- Space charge density increase causes strong coupling between transverse and longitudinal bunch properties.

Thanks to:

- You, for your attention
- J. Roßbach, B. Schmidt, S. Schreiber, C.
 Hagner
- J. Bähr, F. Stephan, D. Lipka, M.
 Krasilnikov, C. Boulware, S. Khodyachykh,
 S. Rimjaem, K. Rosbach and all the
 colleagues at PITZ
- K. Flöttmann
- D. Dowell, C. Limbourg and P. Emma
- T. Kamps