Status of NSLS-II

F. Willeke, BNL DESY, April 6, 2009

Outline

- Requirements
- Lattice Design
- Building
- Injector
- Storage Ring Subsystems
- Organization
- Status and Milestones
- Summary

NSLS-II Accelerator Design Goals

Average Spectral Brightness of 2-10 keV photons: Spectral Flux Density :

B ≥ 10^{21} mm⁻² mrad⁻²s⁻¹ (0.1%BW)⁻¹ $\Phi_{max} \ge 10^{15}$ s⁻¹ (0.1%BW)-1 @ 2 keV.

NSLS-II Accelerator Design Goals

Ε

εχ

ε

L_{ID}

Beam Energy:

Quasi constant, high Beam Current: horizontal Beam Emittance: vertical Beam Emittance: Moderate Beam Energy Spread: High Orbital Stability: Large Space for Insertion Devices:

- = 3 GeV
- = 500 mA, $\Delta I / I = 1\%$
- = 0.6 nm (ultimate design goal)
 - = ~ 8 pm (diffraction limited @12keV)
- $\Delta E / E = 0.1\%$ (RMS)

$$\Delta \mathbf{z}_{,} \Delta \mathbf{z}' = \mathbf{10\%} \cdot \boldsymbol{\sigma}_{z'} \boldsymbol{\sigma}_{z}'$$

= 226 m (28.5%),

with bending magnet sources included space for at least **58 beam lines**

NSLS-II Accelerator Design Goals, continued

Beam Lifetime: Stable Beam Current in time: Small Bunch-to Bunch Current Variation: residual beam oscillations due to injection: Injection Frequency

τ		≥ 3 h
∆ l(t) / l(t	=0)	≤1%
$\Delta \mathbf{I}_{bunch-to}$	-bunch	≤20%
Δz , $\Delta z'$	= 10%	• σ _z ,σ,
1H7-0 01	6 H7	

Basic Lattice Design Strategy

Double Bend Achromat → effective low emittance lattice Minimum Emittance

Minimum (bare lattice) Emittance for $\chi=3/8$ and $\eta\approx0.1$ Note: emittance depends on bend angle

<u>Note</u>: emittance depends on bend angle $\theta = L/\rho$ and on γ and n but not explicitly on L and β_0

$$\operatorname{xe}(\eta) := \frac{C_{.q} \cdot \gamma^2 \cdot \theta^3}{J_{.x}} \cdot \left(\frac{1}{320 \cdot \eta} + \frac{1}{3} \cdot \eta\right) \quad \varepsilon_{.\min} = \frac{C_{q} \cdot \gamma^2 \cdot \theta^3}{J_{x} \cdot \sqrt{240}} + \frac{1}{3} \cdot \eta$$

- The weaker the dipole field, the easier to reach minimum emittance with good D.A. (moderate chromaticity and sextupole strength)
 60 dipoles → minimum emittance
- The weaker the dipole field, the less radiation losses P ~1/ ρ , the easier to reduce emittance by increasing damping with damping wigglers $\epsilon \sim (P \cdot (1+P_{DW}/P))^{-1}$
- The weaker the dipole field, the smaller the energy spread
- •The weaker the dipole field, the more important other effects (IBS) on emittance

•The weaker the dipole, the lass space for insertion devices **Science** U.S. DEPARTMENT OF ENERGY

NSLS-II Accelerator Design Features

Large Circumference 30 cells, Super periodicity of 15 Robust DBA lattice, weak bending field Damper Wigglers reduce emittance by factor 2 (4) Dynamic Aperture for 3hr life time with Touschek effect Superconducting RF, low impedance, excellent beam loading properties for Isrge beam currents Injector for full energy Top-Off Injection

C = 792 m

- B=0.4 Tesla ; $\rho = 25$ m
- B=1.8Tesla, L=21m (56m)
- DA > 15mm x
- 2mm(errors+ID)

l = 500mA

Inj Frequency= 1/minute

Light Source Foot Print

8

Ring Building Cross Section

U.S. DEPARTMENT OF ENERGY

Mezzanine

Ps and Electronic Racks Pulser and cryo equipment Electrical utilities

Tunnel

Beam height Tunnel height Tunnel width Stay Clear Floor 1.2m (EF 1.4m)
 3.2m
 592cm - 363 cm
 154 cm
 85 cm concrete

Experimental FLoor

11

Accelerator Physics

Challenges:

0.5 nm/8pm emittances + large beam current (N_{eb} =10¹⁰)

Touschek limited lifetime

 τ = 3h requires DA: 15 mm x 2 mm @ $\Delta p/p$ =3%

High Orbital Stability: Δy_{co} =0.3 µm @ β =1m @ 500mA

Tight Tolerances 30µm alignment tolerances

Safety for Beam lines during Top-Off

Low Impedance Design

Good Dynamic Aperture with many ID and DW

Lattice Functions for One Cell

U.S. DEPARTMENT OF ENERGY

Dynamic Aperture with Multipole Errors

DA small @ -0.25% $\Delta p/p$ Systematically studied, well understood

Introduction of high precision Q+S magnets in center of achromat

r = 30 mm	regular [1E-4]	High Precision [1E-4]
B ₂ ⁶	1	1
B ₂ ¹⁰	3.3	0.5
B ₂ ¹⁴	3.5	0.1
B_{3}^{9}	1	0.5
B ₃ ¹⁵	1	0.5
B ₃ ²¹	4	0.5

BROOKHAVEN NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES

Dynamic Aperture with Insertion Devices

BROOKHAVEN SCIENCE ASSOCIATES

U.S. DEPARTMENT OF ENERGY

Top Off Safety Study

Injector

Both LINAC and Booster

Are planned to be turn-key

Procurements provided by industry

-Final Design

-Manufacturing

-Installation

-Testing and Commissioning

Bids to be opened within the next few month and orders to be placed

Nov.'09 and Febr. '10.

There are 2 vendors for the booster

And 4 vendors for the LINAC

200MeV S-band Linac 15 nC/s

NSLS-II INJECTOR

U.S. DEPARTMENT OF ENERGY

Injector RF

Commercial 80 kW IOT Amplifier

RF System provided by NSLS-II Based on 1 PETRA 7-cell cavity 80kW IOT

Started to work on coupler and cavity control

Thanks to DESY Directorate and Colleagues!

NATIONAL LABORATORY

Storage Ring Magnet

U.S. DEPARTMENT OF ENERGY

20

Dipoles

BR

NATIONAL LABORATORY

Prototype Production

Completed Yoke of the 90mm Quadrupole magnet

Novel Magnetic Design using "root" and "end" chamfering to suppress high order systematic multipoles

12-20 poles, (18,30 poles)

High Demands on Field Quality

∆B/B < 10-4 @25mm

Protoypes of all magnets built in industry

Manufacturing methods tested at 3 vendors:

•Laser cut of laminations and subsequent high precision machining of stacked yokes

 Laser cut of laminations and subsequent high precision wire EDM of stacked yokes

•Stamping of laminations and subsequent high precision wire EDM of stacked yokes Manufacturing Methods will meet the requirements

All magnets meet the high

Field quality specs

Advanced Measurements Capability

- New 30mm rotating coil
- •State of the Art NSLS II production measurements coil (9 bucking coils)
- Precision of Harmonics 2 10⁻⁶ @ r = 25mm
- •Very Flexible, Can be used for any magnet and multipole

ASAC Review of NSLS-II Project March 26-27, 2009

Magnet Alignment

23

Requirement:

30 μ m magnet to magnet; 100 μ m girder to girder

Method:

Use temperature stab. clean room $\Delta T=1^{\circ}C$ (like tunnel)

Measure magnetic center with stretched wire with RF in static field → achieve 5µm precision

Move magnets into position automatically

Tighten Support bolts Manually

Characterise Girder Surface with inclinometers

Plan to assemble 2 girders per week (45 weeks)

Support system

Magnet Support R&D

•Mechanical resonances > 30Hz confirmed \rightarrow But need large torque to tighten bolts Procedures for transport of equipped girders and reestablishment of girder shaped in place and tested -2000 ft-lbs torque -1000 ft-lbs torque -500 ft-lbs_torque -250 ft-lbs_torque 0.1 -0 ft-lbs_torque PSD (microns/sqrt(Hz) 0.01 00 1 st Modal Frequency (Hz) 8 001 0.001 0.0001 0 180 20 80 160 200 40 60 100 120 140 Freq (Hz) 800 1000 1200 1400 1600 1800 2000 0 200 400 600 Torque (ft-lbs) NATIONAL LABORAT 25 **U.S. DEPARTMENT OF ENERGY** BROOKHAVEN SCIENCE ASSOCIATES

ORY

Girder R&D: Behavior under Temperature Changes

Temperature (Deg C)

Vacuum System

Vacuum System Based on extruded Aluminum,

- Glidcop absorbers take synchr. Radiation load
- Vacuum chamber design
- Well advanced
- Manufacturing techniques verified: extrusions, machining, welding, conditioning
- prototype chamber completed
- Tests in progress
- NEG-pumping strips support structure designed
- BPM Integration developed and optimized
- •Shielded bellow designs developed, impedance models generated and evaluated

NSLS-II Prototype

Aluminum Chamber

Precision Welding on NSLS-II Test Chambers performed at ANL

Welding Tests very satisfactory!

29

В

NATIONAL LABORATORY

Dipole Chamber Bending

Bending Process under Control

NEG Strips and Carriers

2 NEG strips in each AI chamber as main distributed pumping – total ~ 1,200m

Riveted mounting every 10 cm w/ ceramic insulators and carrier plates Fully tested in prototype chambers Modified carriers for BPM TE modes?

NEG strips in antechamber

30min activation @ 450^oC with 70 A thru NEG strips

Shielded Bellow

Hydro-formed Bellow

Flanges with cooling Channels

Novel Approach with outside Finger clamped both ends

32

BROOKHAVEN NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES

Diagnostic System

Monitor	Location					
	SR	BTS	Booster	LTB	Linac	Gun
Wall Current Monitor						3
Fast Current Transformer			1	1	2	
Integrating Current Transformer		1		2		
Fluorescent Screen	1 (3 position)	6	6	7	3	
Energy Slit		1		1		
Bunch Cleaner			1			
RF BPM – Single Pass		7		7	3*	
RF BPM – TBT & Stored Beam	180		20			
ID RF BPM	2 or 3 per ID					
Photon BPMs	1 per ID					
DC Current Transformer	1		1			
Fill Pattern Monitor Stripline	1					
Tune Monitor Stripline	1		1			
Emittance Monitor (3PW source)	1					
Pinhole Camera (BM source)	1					
Optical Ports for visible radiation	1		1			
FireWire Camera	1		1			
Streak-camera	1					
Transverse Feedback Systems	1 H & 1 V					
(Striplines & RF Amplifiers)						
Beam Oscillations Monitor	1					
P-i-n Diode Loss Monitors	60					
Scintillator Loss Monitors	10					
Beam Scrapers (X & Y)	2 sets					
Science					NATIONA	L LABORA

BPM System

34

Button like BPM Antennas

Optimized for equal sensitivity in both planes

Single flange with 2 buttons

→ in-house development

BPM Electronics

Longterm Stability 37.8 Position X , μm Х 37.6 37.4 15 20 25 30 35 5 10 40 45 50 0 **Commercial Available** -12.6 Y Position Y, µm -12.8 -13 20 25 30 5 10 15 35 40 45 50 0 Ambient temperature, degree C 30 29.5 29 28.5 L 20 25 30 35 5 10 15 40 45 50 50 h

BPM Electronics :

Electronics

Qualified in meeting

0.3µm stability requirement

RF Button Heating Issue

Direct Heating

New design incorporates a Boron Nitride heat sink washer on the ambient side of the glass seal.

8 watts per button temperature → maximum value of 109 °C.

Trapped Mode in BPM Chamber (ROGUE Mode) Frequency shifted from 500MHz By RF Shielding

INVAR High Stability BPM Stand

ΕN

Storage Ring RF

Requirements

	Baselin with 2 RF Required	ne Capability Cavity Systems Voltage 3.3 MV	Fully Build-out Capability with 4 RF Cavity Systems Required Voltage 5 MV		RF Stability Requirements		
	#	P(kW)	#	P(kW)			
Dipole	60	144	60	144			
Damping wiggler	3 (21 m)	259	8 (56m)	517		Δφ	dδ
Cryogenic-PMU	3	76	6	127		(deg)	(x10 ⁻⁴)
EPU	2	33	4	66	Centroid jitter due to	0.81	3
Additional devices	~7	120	~10	200			
TOTAL		529		1003	Vertical Divergence	2.4	9
Available RF Power		540		1080	(nom momentum jitter)		
					Dipole, TPW (position stability due to momentum jitter)	0.27	1
					Timing experiments (5% of 15ps bunch	0.14	0.5

@>500Hz)

Storage Ring RF System

- Storage Ring RF: CESR-B or KEK-B single cell 500 MHz sc. cavity
- Three possible vendors for turn-key cavity module
- Turn-key RF transmitter system defined and specified,

Demanding LLRF system for beam stability requirements FPGA based control module, designed, prototype fabricated, tests performed Extensive LLRF modeling in progress, optimize control algorithm to satisfy high demands on RF phase stability of 0.5 °

• S.C. 3rd Harmonic Bunch Lengthening Cavity

PS System

40

- •Main Dipole Thyristor Bridges
- •Quadrupoles, sextupoles:
- •Switched mode with individual DC input
- •Design for high availability:
- Closed air cooled racks

cience

U.S. DEPARTMENT OF ENERGY

Layout of equipment on tunnel mezzanine

Detailed 3-D CAD models of PS equipment inside the racks and

Rack Layout on Mezzanine (tunnel roof) incl. cable trays, cable conduits, AC distribution

Control System

Control System

Efforts concentrated on three areas:

- Controls Architecture Development development is the embedded device controller standard EPICS and control system studio collaborative set of operator applications being developed at DESY and SNS.
- Device Controller Board Prototype

Relational Database Development Development/formatting of configuration tools, scripting tools, web-based reports and machine files: Integrate Asset Management and Controls Database

High Level Application Platform

online model running tracy 2 is operational with a lattice derived from an elegant desk As it runs under EPICS all of the channel access clients work on it including the XAL tools and the matlab middle layer toolkit and SDDS for that matter. open-source protocol (DDS) is examined whether suitable for the high level application architecture.

Cryogenic Systems

900 W @ 4.5 K liquid Helium Refrigerator System Design Completed based on vendor supplied components

cience

U.S. DEPARTMENT OF ENERGY

NSLS-II Insertion Device Plan

Name	U20	U19	U45	U100	DW-1.8T	SCW	3PW
Туре	IVU	CPMU	EPU	EPU	PMW	SCW	PMW
Photon energy range	Hard x-ray (1.9- 20keV)	Hard x-ray (1.5-20keV)	Soft x-ray (180eV- 7keV)	VUV (8eV- 4keV)	Broad band (<10eV- 100keV)	Very hard x-ray (<10eV- 200keV)	Broad band (<10eV- 100keV)
Type of straight section	6.6m	6.6m	9.3m	89.3m	9.3m	6.6m	near 2 nd Dipole
Period length (mm)	20	19	45	100	90	60	-
Total undulator length (m)	3.0	3.0	4.0	4.0	7.0	1.0	0.25
Number of periods	148	158	89	40	75	17	0.5
Magnetic gap (mm)	5	5	10	10	12.5	15	35 (32)
Peak magnetic field strength B (T)	1.03	1.21	0.68(Heli) 1.03 (Lin)	1.50	1.80	3.50	1.14
К	1.81 (eff)	2.03 (eff)	2.80 (eff) 4.53 (eff)	14.01	15.2(eff)	19.61	-
hv fundamental, eV	1832.8	1469.7	183.1	8.6			
hv critical, keV					10.7	21.0	6.8
Total power (kW)	8.02	11.18	12.09	25.64	64.40	34.89	0.34
G(K)	0.97785	0.9818	0.9959	0.9996	0.9997	0.9998	-
On-axis power density (kW/mrad ²)	62.33	77.86	40.03	26.33	55.30	25.60	0.28

45

Insertion Devices

* Magnetic design and tracking studies have been almost completed for all the devices.

* Mechanical / Electrical designs will be conventional and contracted out to the industry for DW and EPU

Damping Wigglers: Final magnetic design is completed , mechanical and electrical design will be contracted in FY08

IVU: Design based on NSLS-II X25 device

EPU: Apple Design

3PW: Design + 1 Device for diagnostic purpose is in the baseline budget.

Brightness

l

Flux

Ring parameters: 3.0 GeV, 0.5 A, ε_h=0.5 nm, ε_v=0.008 nm, energy spread=0.001 Straight section parameters: low-β: $β_h$ =2.02 m, $β_v$ =1.06 m; high-β: $β_h$ =20.8 m, $β_v$ =2.94 m; $α_h$ = $α_v$ = $η_h$ = $η_v$ = η'_h = η'_v =0 Bend magnet parameters: $β_h$ =0.65 m, $β_v$ =25.1 m, $α_h$ =0.032, $α_v$ =-0.044, $η_h$ =0.04 m, η'_h =0.056, $η_v$ = η'_v =0 3-pole wiggler parameters: $β_h$ =3.87 m, $β_v$ =35.2 m, $α_h$ =2.01, $α_v$ =-1.56, $η_h$ =0.168 m, η'_h =-0.105, η_v = η'_v =0

RY S

Six Project Beamlines at NSLS-II

49

Inelastic X-ray Scattering

BAT members

C. Burns (WMU) – Spokesperson; S-H. Chen (MIT); A. Cunsolo (APS, ANL); M. Krisch (ESRF); H-K. Mao (CIW); T. Scopigno (U. Rome); S. Shapiro (CMPMSD, BNL); Y. Shvyd'ko (APS, ANL); J. Hill (BNL)

Coherent Soft X-ray Scattering & Polarization

Fast (1 kHz) circular **BAT members** polarization switching C. Sanchez-Hanke (BNL) – Spokesperson; by beam chopper and H. Ade (NCSU); D. Arena (NSLS); focusing optics for **XMCD** S. Hulbert (NSLS); Y. Idzerda (MSU); S. Kevan (U. Oregon); Experiment n-vacuum S. Wilkins (CMPMSD, BNL) Station diffractometer Vertical Focussing Mirror Experiment Station Apple-II EPU Refocussing Elliptical Slits Exit Pinhole 150 100 50 Grating Monochromator Beam Chopper 200 Vertical Slits 20 Entrance Slits Scientific interests: Plane Grating Monochromator YO strongly correlated systems, -20 magnetic systems and fast magnetic dynamics 20 0 -20 X Cylindrical Collimating Mirror White Beam Slits E = 0.2-2 keV, two Storage Ring Shield Wall branches: coherent Toroidal Branching Mirror Shutter scattering and polarization Defining Aperture & Absorber • World-leading coherent flux control speckle imaging & metrology

Coherent Soft X-ray Scattering & Polarization

Fast (1 kHz) circular **BAT members** polarization switching C. Sanchez-Hanke (BNL) – Spokesperson; by beam chopper and H. Ade (NCSU); D. Arena (NSLS); focusing optics for **XMCD** S. Hulbert (NSLS); Y. Idzerda (MSU); S. Kevan (U. Oregon); Experiment n-vacuum S. Wilkins (CMPMSD, BNL) Station diffractometer Vertical Focussing Mirror Experiment Station Apple-II EPU Refocussing Elliptical Slits Exit Pinhole 150 100 50 Grating Monochromator Beam Chopper 200 Vertical Slits 20 Entrance Slits Scientific interests: Plane Grating Monochromator YO strongly correlated systems, -20 magnetic systems and fast magnetic dynamics 20 0 -20 X Cylindrical Collimating Mirror White Beam Slits E = 0.2-2 keV, two Storage Ring Shield Wall branches: coherent Toroidal Branching Mirror Shutter scattering and polarization Defining Aperture & Absorber • World-leading coherent flux control speckle imaging & metrology

X-ray Powder Diffraction

BAT members

28m

Damping Wiggler

Shutter

S. Billinge (Columbia/BNL) – Spokesperson; P. Chupas (APS, ANL); L. Ehm (SBU/BNL); J. Hanson (Chemistry, BNL); J. Kaduk (INEOS Technologies); J. Parise (SBU); P. Stephens (SBU)

Beryllium Window

Scientific interests: nanoparticles and nanoclusters, extreme environments, timeresolved and total structure studies.

Damping wigglers (7 m), high energy (30-100 keV), high-resolution diffraction plus pairdistribution function studies in side station

Defining Aperture & Absorber

- Multi-crystal analyzer array for high-resolution
- 7000 element strip detector for ms time-resolved

Sub-micron Resolution X-ray Spectroscopy

BAT members

T. Lanzirotti (Chicago) – Spokesperson; S. Sutton (Chicago); S. Vogt (ANL); G. Woloschak (NU); M. Rivers (Chicago); P. Eng (Chicago); L. Miller (NSLS); J. Fitts (BNL); P. Northrup (BNL)

Detector

<u>Scientific interests</u>: submicron imaging of elemental distribution in chemical and energy science, materials science, earth and environmental science, life science

Undulator beamline 2 – 25 keV. Mostly using XRF imaging. KB 100 nm main branch and FZP 30 nm side branch (not in initial scope)

World-leading x-ray brightness in 100x100 nm² focal spot size

NSLS-II Key Milestones

Aug 2005	CD-0, Approve Mission Need	(Complete)
Jul 2007	CD-1, Approve Alternative Selection and Cost Range	(Complete)
Jan 2008	CD-2, Approve Performance Baseline	(Complete)
Dec 2008	CD-3, Approve Start of Construction	(Complete)
Feb 2009	Contract Award for Ring Building	
Aug 2009	Contract Award for Storage Ring Magnets	
Mar 2010	Contract Award for Booster System	
Feb 2011	1 st Pentant of Ring Building Ready for Accelerator Installation	
Feb 2012	Beneficial Occupancy of Experimental Floor	
Oct 2013	Start Accelerator Commissioning	
Jun 2014	Early Project Completion; 1 st Beam to Beamlines soon afterwards	5
Jun 2015	CD-4, Approve Start of Operations	

Accelerator Systems Schedule

56

Organization

U.S. DEPARTMENT OF ENERGY

58

NATIONAL LABORATORY

Staffing

59

Summary

- NSLS-II made very fast progress from conceptual design phase to construction phase
- Civil Construction has started
- The technical progress of accelerator systems is very good and all critical designs have been performed
- Major Procurements of Technical Components has Started
- A strong management scheme is in place
- The funding prospects for the project are excellent

