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FLASH

Free-electron LASer in Hamburg
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Dispersion in linacs

Dispersion is the momentum 5<0
dependence of charged particle 5=0
deflections in a magnetic field -
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The dispersion functions D,(s,,s) and D,(s,,s) describe the change in transverse phase-space
coordinates at s due to a momentum change at s,
They depend on the point where the momentum changes.
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Effects on the electron beam distribution

Circular accelerators - moments of energy distribution = constant
Linacs - moments of energy distribution # constant

The impact of dispersion depends on the position of the dispersion sources
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Effects on the FEL process

1) Dispersion causes FEL power jitter due to electron energy fluctuations

2) D — 0 1 — gain length 1 power)

Increase of gain length for
FLASH design parameters
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D < 1.8 cm — Increase of gain length < 10%
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Generation mechanisms of dispersion
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Spurious dispersion sources

Dipole field errors Trajectory errors and misalignments
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Sensitivities for FLASH

Required amount of error to generate 10 mm of dispersion in the undulator (RMS)

No orbit correction is performed
(average results over 200 seeds)

Error type Required ammount
Quadrupole x: 17 um
misalignment y: 18 um
Quadrupole 1.31 %
field error
Quadrupole 4.1-103 m=2
component in dipoles
Vertical dipole 215 um
misalignment
Dipole field 0.13 %
error
Cavity x: 2.0 mm
misalignment y: 1.8 mm

Quadrupole misalignments are the most important dispersion sources
Collimator is a critical area



Measurement and correction
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X [mm]

y [mm]

Dispersion measurement

It is based on measuring the orbit for different beam energies
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Dispersion measurement errors

Statistical errors ] 4 steps ) So=1%
¢ StotziO'S% i .‘” ——e— 2 steps ‘
| g |
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Systematic errors:
= RF steering: corrected
= Calibration errors for &: < 0.3%
= BPM calibration errors: ~ 5%
= BPM nonlinearities: negligible if D = £10 cm (assuming no BPM off-set and 6, ,= +1%)

= Drifts (negligible because of the short measurement time) 14



Examples of measurements at FLASH

Day 1

Horizontal dispersion

Day 2 (SASE conditions)

Horizontal dispersion
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Different errors change the spurious dispersion depending
on the actual operating conditions of the accelerator, so
dispersion must be measured and controlled frequently.
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Dispersion correction algorithm

It corrects both and dispersion, using dipole magnets and quadrupole movers.

The optimal settings are calculated using the and dispersion response matrices.

AX; R AD,
i = — > Dispersion response term Ai | = !
A0, A,
Ax. | AD, ---------- > change of the orbit / dispersion at the BPM i
AB -

J. > change of the kick angle of the steererj

~ B %
(,:\) ‘AG = _}lnd
A Dind

— —

meas T nd - Xgold + WHDmeas Dind -D

(1-w)x

2 :
‘ =min

gold

ind = induced, meas = measured, gold = golden (target)
w: weighting factor (w = 0 only orbit correction, w = 1 only dispersion correction)
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Scheme for dispersion correction procedure

Measurement - ~ Analysis
1 1
A E X
o Orbit
E. X, Dispersion
Corr strengths
d dx/d ’
Set | to steerers Quad dx/dy Correction

Set dx/dy to quad

|

Response Matrices
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Dx [mm]

kick [mrad]

x [mm]

Dispersion tool at FLASH

The dispersion measured from all accelerator modules
can be kept below 5 mm (RMS) in both planes.

Examples
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Effects on transverse beam quality at FLASH
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Beam tilt experiment
(with C. Gerth and K. Hacker)

Studies on how vertical dispersion tilts the beam at BC2 and causes an increase of the
emittance. The dispersion is generated by applying vertical trajectory bumps through ACC1.
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Beam tilt experiment. Measurements.

Beam tilt

Bump amplitude at BPM9ACC1 [mm]

Emittance
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Tilt [deg]

Beam tilt experiment. Simulations.

Simulations done with elegant

Initial vertical trajectory offset of 3.0 mm reproduces the measurements
(orbit, dispersion, beam tilt and emittance)

Beam tilt Emittance
| | | | | ! | | | | |
20 s S [ R e el | | | | |
! ; : measurements 0.8 : : ! | |
1.5 | | | simulations ' i i i ©— measurements
I | | || —><— simulations
g OO N
1 ® ‘ ‘ ‘
(] | | |
b | | |
£
0.5 Q
C
©
E
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L
-0.5 i | | | | : :
A | | | | | ; :
-6 -4 -2 0 2 4 6 -0. w ‘
Bump amplitude at BPMYACC1 [mm] -6 -4 2 0 2 4 6

Bump amplitude at BPM9ACC1 [mm]

= The required steering to improve the beam quality was counteracting a vertical kick

which is in accordance with a relative solenoid misalignment of ~ 300 um.
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D_[mm]

X

Dispersion generation in the undulator
Current of Q3/5ECOL was decreased by 10% - D, = 140 mm (RMS)

Profile at SUNDG6 (50 um W - wire)
Dispersion generation

Measurements Simulations
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X

Dispersion correction in the undulator

Correction of D, in the undulator from 22 to 4 mm (RMS)
Beam emittance reduced by 20% (from 5.8 to 4.7 pm)
Beam shoulders vanished due to dispersion correction
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Emittance transport
(with F. Loehl and K. Honkavaara)

Results of projected emittance at FLASH for 2 different days

after linac optimization (i.e. orbit and dispersion correction)
Normalized values for 90% beam intensities
Design emittance is 2 ym

Day 17-02-2007 08-09-2007
Section g, [MmM] €, [um] g, [Mm] €, [um]
DBC2 2.4 2.5 2.2 2.1

Seeding 2.0 2.2 1.8 2.3

Statistical measurement errors = 0.1 ym
Systematic errors > 0.1 um

Dispersion correction (to less than 10 mm) is necessary
for the conservation of the projected emittance
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Effects on FEL performance at FLASH
— SASE sensitivity to electron beam energy offset

— Dispersion impact on SASE spectrum
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SASE sensitivity to electron beam
energy offset. Measurements.

Motivation: show that by correcting the dispersion inside the undulator, the
SASE power jitter due to electron beam energy fluctuations decreases

100

—oe— initial meas. —&— D, added —+— D, corrected —— D, and Dy corrected i‘ni tial meas‘. i i
‘ ‘ ‘ ‘ T —&— D, added - *i ******* i ****** .
L i 7: i —— DX corrected ,‘, 1
| — 08l o DX and Dy corrected V 77777 i 777777 i
3_ | | |
5, l l g l
> l g l
D06 - L - S SRR EEEEEE e
2 1 Y i i 1
o ! B SF Jio) |
1] | | fs“‘ Q‘»“ |
2 0.4F------ :L————i——;—%— ‘—————i ——————
w &Y W] :
L P &
02 --—-———- ‘L ,,,,, % ,,,,,,,,, N _
i $ J A i &
//\/ | | I Ai’} 'Zf';% X \% : “"1}
26 20 25 20 235 0015 001 0.005 001 0015 002
Condition D,(RMS) | D,(RMS) | FWHM in AE/E
Initial measurement 22 mm 30 mm 0.82 %
D, generated 48 mm 28 mm 0.74 %
D, corrected 12 mm 31 mm 1.06 %
D, and D, corrected 11 mm 5 mm 1.72 % 27




SASE sensitivity to electron beam
energy offset. Simulations.

Simulations done with Genesis 1.3 (only initial and last cases)

Effects /trajectory changes:
Ax,y=D, 0
Axy’=D,- 0

energy. - optics
- undulator field
- undulator focusing

<

o
‘ —O— initial case (meas.) initial case (prediction) ‘
50 ‘ —<— after corr. (meas.) after corr. (prediction) ‘
e
E 0
D><
Dispersion along the undulator: -50 1 1 1 1 1
. 205 210 215 220 225 230 235
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according to the dispersion g h S Tm—" r——
: 50 ‘
functions at the undulator entrance. |
e
E 0 (-t
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s [m]

No dispersion is generated inside the undulator
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SASE sensitivity to electron beam
energy offset. Measurements and simulations.
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Dispersion impact on the SASE spectrum
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Dispersion impact on the SASE spectrum.
Simulations with a Gaussian electron beam

Study restricted to the impact of D, and x

3 dispersion scenarios: D =

X

D =

X

D =

X

Initial offset distributions:
1. Zero offset along the bunch

2. Non-zero offset along the bunch
3. Quadratic x-energy correlation

x10™ Horizontal offset

Input beam properties

——no disp
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longitudinal position along the bunch [m] , 44

Radiation spectrum
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Dispersion impact on the SASE spectrum.
Realistic Simulations

Electron properties obtained from
s2e simulations (M. Dohlus)

Considered cases:
- No dispersion
- Changes of QECOL of £1.5%

Trajectory changes:
x(i) = xo(i) + D, -0(/)
X'(i) = Xli) + D’ -0(i)

There is a 2" order correlation between
x and energy (e.g. due to CSR effects).
In addition:

Xo =50 ym

X’y =-20 prad

x 10

x and x’ along the bunch
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FEL power [a.u.]

FEL power [a.u.]

Dispersion impact on the SASE spectrum
Measurements versus simulations

Measurements
1 T T T
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M \ | \/\ |
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Conclusion
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Conclusion

- A method to measure and correct dispersion has been
presented. A tool based on this method able to correct the
dispersion down to 5 mm has been implemented at FLASH.

— Dispersion correction is a key issue for the optimization of the
transverse beam quality at linac-based FEL facilities.

— The SASE power jitter due to electron energy fluctuations was
decreased by correcting dispersion.

- The presence of dispersion reduces the FEL power and
makes the radiation spectrum narrower.

— It has been shown that dispersion can be used to shift the
central wavelength of the SASE spectrum at FLASH.
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