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FLASH
Free-electron LASer in Hamburg

130 MeV

up to 1000 MeV

5 MeV

380 MeV

Areas for projected emittance measurements

Energy change for dispersion measurements
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Dispersion is the momentum 
dependence of charged particle 
deflections in a magnetic field

Dispersion in linacs

ΔxD(s) = Dx(s0,s)‧ δ(s0) + Dxx(s0,s)‧ δ2(s0) + …

Δx’D(s) = D’x(s0,s)‧ δ(s0) + D’xx(s0,s)‧ δ2(s0) + …

Effects to a single particle
Beam offsets and angles
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The dispersion functions Dx(s0,s) and Dy(s0,s) describe the change in transverse phase-space 
coordinates at s due to a momentum change at s0. 
They depend on the point where the momentum changes. 

δ = Δp/p0

δ < 0

δ > 0
δ = 0
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Effects on the electron beam distribution

Circular accelerators moments of energy distribution = constant
Linacs moments of energy distribution ≠ constant

Measured beam 
image at BC2
(Dx = -35 cm)

The impact of dispersion depends on the position of the dispersion sources

Example: c-shape effect 
at BC2 (FLASH)

Momentum distributions
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Effects on the FEL process

D < 1.8 cm → Increase of gain length < 10%

2) D → σ ↑ → gain length ↑, power↓

Increase of gain length for
FLASH design parameters

Example of offset along the 
bunch with and without dispersion
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1) Dispersion causes FEL power jitter due to electron energy fluctuations

3) D → Intrabunch trajectory deviations → power ↓
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Dispersive sections in FELs
Bunch compressors and collimator sections
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Spurious dispersion sources

Other sources:
- any additional dipole field (e.g. coupler kicks) 
- any additional quadrupole (and sextupole) field 
in dispersive sections
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Sensitivities for FLASH

Error type Required ammount

Quadrupole 
misalignment

x: 17 µm
y: 18 µm

Quadrupole 
field error

1.31 %

Quadrupole 
component in dipoles

4.1‧10-3 m-2

Vertical dipole 
misalignment

215 µm 

Dipole field 
error

0.13 %

Cavity 
misalignment

x: 2.0 mm
y: 1.8 mm

Required amount of error to generate 10 mm of dispersion in the undulator (RMS)
No orbit correction is performed

(average results over 200 seeds)

Quadrupole misalignments are the most important dispersion sources
Collimator is a critical area
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Dispersion measurement
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It is based on measuring the orbit for different beam energies

1. Change RF gradient of the module
2. Apply orbit correction to compensate RF steering effect  
3. Read BPM positions downstream last correction BPM

Accelerator module

C1 C2

BPM1

BPM2

x(s) = x0 + Dx(s0,s)‧δ(s0) + Dxx(s0,s)‧δ2(s0)

y(s) = y0 + Dy(s0,s)‧δ(s0) + Dyy(s0,s)‧δ2(s0)
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Dispersion measurement errors

• Statistical errors

• Systematic errors:
RF steering: corrected
Calibration errors for δ: < 0.3%
BPM calibration errors: ~ 5%
BPM nonlinearities: negligible if D = ±10 cm (assuming no BPM off-set and δtot = ±1%)

Drifts (negligible because of the short measurement time)
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Examples of measurements at FLASH
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Different errors change the spurious dispersion depending 
on the actual operating conditions of the accelerator, so 
dispersion must be measured and controlled frequently.

Day 1 Day 2 (SASE conditions)
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Dispersion correction algorithm
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It corrects both orbit and dispersion, using dipole magnets and quadrupole movers. 

The optimal settings are calculated using the orbit and dispersion response matrices.

Δxi / ΔDi ---------->   change of the orbit / dispersion at the BPM i
Δθj ----------->   change of the kick angle of the steerer j

Orbit response term Dispersion response term

min)1(
22
=−++−+− goldindmeasgoldindmeas DDDwxxxw

rrrrrr

ind = induced, meas = measured, gold = golden (target)
w: weighting factor (w = 0 only orbit correction, w = 1 only dispersion correction)
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Scheme for dispersion correction procedure

Measurement Analysis

CorrectionSet I to steerers
Set dx/dy to quad

Orbit
Dispersion

Response Matrices

Corr strengths
Quad dx/dy

E1 x1
E2 x2
...    …
En xn



18

Dispersion tool at FLASH
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The dispersion measured from all accelerator modules 
can be kept below 5 mm (RMS) in both planes.
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Beam tilt experiment
(with C. Gerth and K. Hacker)
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Beam tilt experiment. Measurements.
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Beam tilt experiment. Simulations.

Simulations done with elegant

Initial vertical trajectory offset of 3.0 mm reproduces the measurements 
(orbit, dispersion, beam tilt and emittance)

22

The required steering to improve the beam quality was counteracting a vertical kick 
which is in accordance with a relative solenoid misalignment of ~ 300 μm.
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Dispersion generation in the undulator
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Dispersion correction in the undulator
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Emittance transport
(with F. Loehl and K. Honkavaara)

Day 17-02-2007 08-09-2007

Section εx [μm] εy [μm] εx [μm] εy [μm]

DBC2 2.4 2.5 2.2 2.1 

Seeding 2.0 2.2 1.8 2.3

Results of projected emittance at FLASH for 2 different days 
after linac optimization (i.e. orbit and dispersion correction)

Normalized values for 90% beam intensities 
Design emittance is 2 μm

Dispersion correction (to less than 10 mm) is necessary 
for the conservation of the projected emittance

Statistical measurement errors = 0.1 μm
Systematic errors > 0.1 μm
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SASE sensitivity to electron beam
energy offset. Measurements.
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Dx and Dy corrected 11 mm 5 mm 1.72 %

Motivation: show that by correcting the dispersion inside the undulator, the 
SASE power jitter due to electron beam energy fluctuations decreases
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SASE sensitivity to electron beam 
energy offset. Simulations.

Simulations done with Genesis 1.3 (only initial and last cases)

Effects trajectory changes:
Δx,y = Dx,y‧ δ
Δx’,y’ = D’x,y‧ δ
energy: - optics

- undulator field
- undulator focusing

Dispersion along the undulator: 
measurements and predictions 
according to the dispersion 
functions at the undulator entrance.
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SASE sensitivity to electron beam 
energy offset. Measurements and simulations.
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Dispersion impact on the SASE spectrum
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Measurements of SASE spectrum 
for different horizontal dispersions

Dispersion deviates off-energy particle trajectories: 
FEL power ↓
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Dispersion impact on the SASE spectrum.
Simulations with a Gaussian electron beam

Study restricted to the impact of Dx and x 
3 dispersion scenarios: Dx = 0 

Dx = +5 cm
Dx = -5 cm

Initial offset distributions:
1. Zero offset along the bunch
2. Non-zero offset along the bunch
3. Quadratic x-energy correlation
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Dispersion impact on the SASE spectrum.
Realistic Simulations

Electron properties obtained from 
s2e simulations (M. Dohlus)

Considered cases:
- No dispersion 
- Changes of QECOL of ±1.5%

Trajectory changes:
x(i) = x0(i) + Dx‧δ(i)
x’(i) = x’0(i) + D’x‧δ(i)
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There is a 2nd order correlation between 
x and energy (e.g. due to CSR effects). 
In addition:
x0 = 50 μm
x’0 = -20 μrad



Dispersion impact on the SASE spectrum
Measurements versus simulations
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Conclusion

A method to measure and correct dispersion has been 
presented. A tool based on this method able to correct the 
dispersion down to 5 mm has been implemented at FLASH. 

Dispersion correction is a key issue for the optimization of the
transverse beam quality at linac-based FEL facilities. 

The SASE power jitter due to electron energy fluctuations was 
decreased by correcting dispersion. 

The presence of dispersion reduces the FEL power and 
makes the radiation spectrum narrower. 

It has been shown that dispersion can be used to shift the 
central wavelength of the SASE spectrum at FLASH.
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