

## Accelerator Seminar --- DESY

Elena Wildner - CERN Achim Stahl - RWTH Aachen

13.Jan.09



Part I: A European Neutrino Program Scientific Motivation - Achim Stahl -

Part II: R&D for beta-beams - Elena Wildner -

Part III: Beta-beams at DESY ? - Achim Stahl -

17.Dez.08

# Part I Scientific Motivation

# The Framework: A European Neutrino Program

the core of the program is LAGUNA

#### Large Apparatus for Grand Unification and Neutrino Astrophysics

beta-beams are part of this program



## **MEMPHYS - MEgaton Mass PHYSics**

## **Detector scheme**



- Size of each shaft
  - 80 m heigth
    65 m Ø
- Water Cherenkov Effect
  - ~ 500 kton pure water
- Photomultipliers
  - 81 000 units per shaft
  - 30% coverage

## GLACIER - Giant Liquid Argon Charge Imaging ExpeRiment

## Detector scheme



### Size

- 20 m heigth
- ∎ 70 m Ø
- Liquid Argon TPC
  - $\sim$  100 kton liquid argon
- Readout system
  - e<sup>-</sup> drift: amplification with LEMs in the gas phase
  - Cherenkov Light: 27 000 PM 20% coverage
  - Scintillation Light: 1 000 PMT

## LENA - Low Energy Neutrino Astronomy

## **Detector scheme**



### Size

- 100 m length
- 30 m Ø
- Liquid Scintillator
  - $\sim$  50 kton PXE
- Photomultipliers
  - 13 500 units
  - 30% coverage
- Photoelectron yield
  - 110 pe/MeV

# Scientific Goals 1: GeoPhysics

## **Experimental investigation of geologically produced antineutrinos with KamLAND**

T. Araki<sup>1</sup>, S. Enomoto<sup>1</sup>, K. Furuno<sup>1</sup>, Y. Gando<sup>1</sup>, K. Ichimura<sup>1</sup>, H. Ikeda<sup>1</sup>, K. Inoue<sup>1</sup>, Y. Kishimoto<sup>1</sup>, M. Koga<sup>1</sup>, Y. Koseki<sup>1</sup>, T. Maeda<sup>1</sup>, T. Mitsui<sup>1</sup>, M. Motoki<sup>1</sup>, K. Nakajima<sup>1</sup>, H. Ogawa<sup>1</sup>, M. Ogawa<sup>1</sup>, K. Owada<sup>1</sup>, J.-S. Ricol<sup>1</sup>, I. Shimizu<sup>1</sup>, J. Shirai<sup>1</sup>, F. Suekane<sup>1</sup>, A. Suzuki<sup>1</sup>, K. Tada<sup>1</sup>, S. Takeuchi<sup>1</sup>, K. Tamae<sup>1</sup>, Y. Tsuda<sup>1</sup>, H. Watanabe<sup>1</sup>, J. Busenitz<sup>2</sup>, T. Classen<sup>2</sup>, Z. Djurcic<sup>2</sup>, G. Keefer<sup>2</sup>, D. Leonard<sup>2</sup>, A. Piepke<sup>2</sup>, E. Yakushev<sup>2</sup>, B. E. Berger<sup>3</sup>, Y. D. Chan<sup>3</sup>, M. P. Decowski<sup>3</sup>, D. A. Dwyer<sup>3</sup>, S. J. Freedman<sup>3</sup>, B. K. Fujikawa<sup>3</sup>, J. Goldman<sup>3</sup>, F. Gray<sup>3</sup>, K. M. Heeger<sup>3</sup>, L. Hsu<sup>3</sup>, K. T. Lesko<sup>3</sup>, K.-B. Luk<sup>3</sup>, H. Murayama<sup>3</sup>, T. O'Donnell<sup>3</sup>, A. W. P. Poon<sup>3</sup>, H. M. Steiner<sup>3</sup>, L. A. Winslow<sup>3</sup>, C. Mauger<sup>4</sup>, R. D. McKeown<sup>4</sup>, P. Vogel<sup>4</sup>, C. E. Lane<sup>5</sup>, T. Miletic<sup>5</sup>, G. Guillian<sup>6</sup>, J. G. Learned<sup>6</sup>, J. Maricic<sup>6</sup>, S. Matsuno<sup>6</sup>, S. Pakvasa<sup>6</sup>, G. A. Horton-Smith<sup>7</sup>, S. Dazeley<sup>8</sup>, S. Hatakeyama<sup>8</sup>, A. Rojas<sup>8</sup>, R. Svoboda<sup>8</sup>, B. D. Dieterle<sup>9</sup>, J. Detwiler<sup>10</sup>, G. Gratta<sup>10</sup>, K. Ishii<sup>10</sup>, N. Tolich<sup>10</sup>, Y. Uchida<sup>10</sup>, M. Batygov<sup>11</sup>, W. Bugg<sup>11</sup>, Y. Efremenko<sup>11</sup>, Y. Kamyshkov<sup>11</sup>, A. Kozlov<sup>11</sup>, Y. Nakamura<sup>11</sup>, H. J. Karwowski<sup>12</sup>, D. M. Markoff<sup>12</sup>, K. Nakamura<sup>12</sup>, R. M. Rohm<sup>12</sup>, W. Tornow<sup>12</sup>, R. Wendell<sup>12</sup>, M.-J. Chen<sup>13</sup>, Y.-F. Wang<sup>13</sup> & F. Piquemal<sup>14</sup>

The detection of electron antineutrinos produced by natural radioactivity in the Earth could yield important geophysical information. The Kamioka liquid scintillator antineutrino detector (KamLAND) has the sensitivity to detect electron antineutrinos produced by the decay of <sup>238</sup>U and <sup>232</sup>Th within the Earth. Earth composition models suggest that the radiogenic power from these isotope decays is 16 TW, approximately half of the total measured heat dissipation rate from the Earth. Here we present results from a search for geoneutrinos with KamLAND. Assuming a Th/U mass concentration ratio of 3.9, the 90 per cent confidence interval for the total number of geoneutrinos detected is 4.5 to 54.2. This result is consistent with the central value of 19 predicted by geophysical models. Although our present data have limited statistical power, they nevertheless provide by direct means an upper limit (60 TW) for the radiogenic power of U and Th in the Earth, a quantity that is currently poorly constrained.

# Scientific Goals 2: Super Novae

Å

Observation



Today: 1 observed (SN1987a) Expect: several 100 per year 180.1ms225.7msImage: Construction of the second of the se

Simulation

Understand neutrino cooling through cross section measurement

Super Nova explosions are one of our best sources of information on the development of the universe: Understand them better!



## **Scientific Goals 3: Nuclear Physics**

#### Structure of Nucleus

super-allowed Fermi-transistions (V<sub>ud</sub>) Gamow-Teller transitions, 2nd Class Currents Excitation of higher multipoles, axial-vector-cur.

#### **Cross Section Measurements**

Xsec for neutrino-detectors neutrino cooling in core-collapse Super Novae breeding of heavy elements in Super Novae prediction in neutrinoless 2-β-decay

#### **Weak Interactions**

Weinbergangle at low Q<sup>2</sup> (running) CVC tests The magnetic moment of the neutrino low energy beta-beam  $\gamma = 5 \dots 14 / E_{v} = 10 \dots 100 \text{ MeV}$ 



dedicated storage ring parasitic use of the ion source approx. 500 m circumference

See Christina Volpe, Beta-beams, hep-ph/0605033v2, Nov. 2006 and references

# **Scientific Goals 4: Proton Decay**



Grand Unified Theories

Probably the only experimental chances:

- 1. Proton Decay
- 2. Magnetic Monopoles





## Scientific Goal: Neutrino-Oscillations

#### Solar Neutrinos

electron-neutrino disappearance

$$\Delta m_{21}^2 = \Delta m_{\rm sol}^2 = 8.0^{+0.6}_{-0.4} \cdot 10^{-5} \text{eV}^2$$
$$\theta_{12} = \theta_{\rm sol} = 33.9^{\circ + 2.4^{\circ}}_{-2.2^{\circ}}$$

**Atmospheric Neutrinos** 

myon-neutrino disappearance  $\Delta m_{32}^2 = \Delta m_{\text{atm}}^2 = 2.4^{+0.6}_{-0.5} \cdot 10^{-3} \text{eV}^2$ 

$$\theta_{23}=\theta_{\rm atm}=45\pm7^{\circ}$$

#### **Reactor Neutrinos**

electron-neutrino disappearance no signal



systematic limited: • neutrino flux from reactor • Xsec for detection



## Scientific Goal: Neutrino-Oscillations

#### Solare Neutrinos

Elektron-Neutrino Disappearance

$$\Delta m_{21}^2 = \Delta m_{\rm sol}^2 = 8.0^{+0.6}_{-0.4} \cdot 10^{-5} {\rm eV}^2$$

 $\theta_{12} = \theta_{\rm sol} = 33.9^{\circ + 2.4^{\circ}}_{-2.2^{\circ}}$ 

Atmosphärische Neutrinos Müon-Neutrino Disappearance  $\Delta m^2_{32} = \Delta m^2_{\rm atm} = 2.4^{+0.6}_{-0.5} \cdot 10^{-3} {\rm eV}^2$  $\theta_{23} = \theta_{\rm atm} = 45 \pm 7^{\circ}$ 

#### Reaktorneutrinos

Elektron-Neutrino Disappearance kein Signal



systematisch limitiert: • Neutrinofluß vom Reaktor • WQ für Nachweisreaktion



#### **Open Questions:**

How large is  $\theta_{13}$ ? Precision measurements ( $\theta_{23}$  maximal ?) Absolute mass scale ? Normal or inverted hierarchie ? Majorana or Dirac-neutrinos ? CP-violation ?

## **CP-Violation**



#### Sakharov-Conditions



1.CP-Violation
 2. Baryon-Number Violation
 3. thermal non-equilibrium

Jarlskog's determinant

 $J = c_{12}s_{12}c_{23}s_{23}c_{13}^2s_{13}s_{\delta} = (1 - s_{12}^2)^{1/2}(1 - s_{23}^2)^{1/2}(1 - s_{13}^2)s_{12}s_{23}s_{13}s_{\delta}$ 

Quarks: 4 10<sup>-5</sup>

Neutrinos: 0.028 sin $\delta$ 

## **CP-Violation**

Testing the discrete symmetries with neutrinos



tau-neutrinos: no practical beam-source

Examples CP-TEST:  $v_e \rightarrow v_\mu / \overline{v}_e \rightarrow \overline{v}_\mu$ T-TEST:  $v_e \rightarrow v_\mu / v_\mu \rightarrow v_e$ 

 $\begin{array}{c} \text{CPT-TEST:} \\ \nu_{e} \rightarrow \nu_{\mu} \ / \ \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} \end{array}$ 

## Vacuum-Oscillations

#### CP-violation is a genuin 3 generation effect

$$P_{\alpha \to \beta} = \delta_{\alpha \beta} - 4 \sum_{i>j} Re(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin^2(\frac{\Delta m_{ij}^2 L}{4E}) \qquad \Delta m_{ij}^2 \equiv m_i^2 - m_j^2 + 2 \sum_{i>i} Im(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin(\frac{\Delta m_{ij}^2 L}{2E})$$



## **Matter-Effect**



Example: CERN-GranSasso (CNGS)

$$\begin{split} p(\nu_{\mu} \to \nu_{e}) &= 4c_{13}^{2} s_{13}^{2} s_{23}^{2} \sin^{2} \frac{\Delta m_{13}^{2} L}{4E} \times \left[ 1 \pm \frac{2a}{\Delta m_{13}^{2}} (1 - 2s_{13}^{2}) \right] \qquad \theta_{13} \text{ dri} \\ &+ 8c_{13}^{2} s_{12} s_{13} s_{23} (c_{12} c_{23} \cos \delta - s_{12} s_{13} s_{23}) \cos \frac{\Delta m_{23}^{2} L}{4E} \sin \frac{\Delta m_{13}^{2} L}{4E} \sin \frac{\Delta m_{12}^{2} L}{4E} \text{ CPer} \\ &\mp 8c_{13}^{2} c_{12} c_{23} s_{12} s_{13} s_{23} \sin \delta \sin \frac{\Delta m_{23}^{2} L}{4E} \sin \frac{\Delta m_{13}^{2} L}{4E} \sin \frac{\Delta m_{12}^{2} L}{4E} \quad \text{CPodd} \\ &+ 4s_{12}^{2} c_{13}^{2} \{c_{13}^{2} c_{23}^{2} + s_{12}^{2} s_{23}^{2} s_{13}^{2} - 2c_{12} c_{23} s_{12} s_{23} s_{13} \cos \delta\} \sin \frac{\Delta m_{12}^{2} L}{4E} \quad \text{solar driver} \\ &\mp 8c_{12}^{2} s_{13}^{2} s_{23}^{2} \cos \frac{\Delta m_{23}^{2} L}{4E} \sin \frac{\Delta m_{13}^{2} L}{4E} \frac{aL}{4E} (1 - 2s_{13}^{2}) \quad \text{matter effect (CP odd)} \end{split}$$





$$\begin{split} p(\nu_{\mu} \to \nu_{e}) &= 4c_{13}^{2} s_{13}^{2} s_{23}^{2} \sin^{2} \frac{\Delta m_{13}^{2} L}{4E} \times \left[ 1 \pm \frac{2a}{\Delta m_{13}^{2}} (1 - 2s_{13}^{2}) \right] \qquad \theta_{13} \text{ dri} \\ &+ 8c_{13}^{2} s_{12} s_{13} s_{23} (c_{12} c_{23} \cos \delta - s_{12} s_{13} s_{23}) \cos \frac{\Delta m_{23}^{2} L}{4E} \sin \frac{\Delta m_{13}^{2} L}{4E} \sin \frac{\Delta m_{12}^{2} L}{4E} \text{ CPer} \\ &\mp 8c_{13}^{2} c_{12} c_{23} s_{12} s_{13} s_{23} \sin \delta \sin \frac{\Delta m_{23}^{2} L}{4E} \sin \frac{\Delta m_{13}^{2} L}{4E} \sin \frac{\Delta m_{12}^{2} L}{4E} \quad \text{CPodd} \\ &+ 4s_{12}^{2} c_{13}^{2} \{c_{13}^{2} c_{23}^{2} + s_{12}^{2} s_{23}^{2} s_{13}^{2} - 2c_{12} c_{23} s_{12} s_{23} s_{13} \cos \delta\} \sin \frac{\Delta m_{12}^{2} L}{4E} \quad \text{solar driver} \\ &\mp 8c_{12}^{2} s_{13}^{2} s_{23}^{2} \cos \frac{\Delta m_{23}^{2} L}{4E} \sin \frac{\Delta m_{13}^{2} L}{4E} \frac{aL}{4E} (1 - 2s_{13}^{2}) \quad \text{matter effect (CP odd)} \end{split}$$





## **Neutrino-Beams: Two Alternative Concepts**



## New Idea: Beta-Beams

Piero Zucchelli Phys.Lett. B532:166, 2002 http://beta-beam.web.cern.ch/beta-beam



accelerate radioactive ions  $\rightarrow$  beta-decay  $\rightarrow$  neutrino beam



## Kinematics:



$$E_{lab} = \gamma E^*$$
  
$$\theta_{lab} = 1/\gamma \sin \theta^* / (1 + \cos \theta^*)$$

Event rate in your detector

(fixed number of decays in the ring; detector at optimal baseline)

#### Dependance on $\gamma$

Opening angle ~  $1/\gamma \rightarrow$  flux at fixed distance ~  $\gamma^2$   $E_{lab} \sim \gamma \rightarrow$  optimal Baseline ~  $\gamma \rightarrow$  flux at detector ~  $1/\gamma^2$  $E_{lab} \sim \gamma \rightarrow$  cross section ~  $\gamma$ 

} ~ γ

#### <u>Dependance on E\*</u>

Opening angle independent of E\*  $E_{lab} \sim E^* \rightarrow optimal baseline \sim E^* \rightarrow flux at detector \sim 1/E^{*2}$  $E_{lab} \sim E^* \rightarrow cross section \sim E^*$ 

# Part II R&D for Beta-Beams





## R&D for beta-beams

## Elena Wildner, CERN



R&D for Beta Beams, 13 Jan 2009, Elena Wildner





# Options for Accelerators

- The EURISOL Beta Beam Scenario
- Ion Production
- Loss Management
- R&D





# Options for Accelerators

- The EURISOL Beta Beam Scenario
- Ion Production
- Loss Management
- R&D



Crucial importance for physics

- Energy spectrum
- Flux
- Distance from production (neutrino oscillation)
- Neutrino and antineutrino pairs

# Parameters for physics

- Energy spectrum
  - Reaction energy Q (a few MeV, ion dependent)
  - Relativistic boost factor γ
- Flux
  - Accelerator issues (apertures, intra beam scattering, space charge...)
  - Relativistic boost factor  $\gamma$ : forward focusing of neutrinos:  $\theta \le 1/\gamma$
  - Life-time of chosen ion
  - Decay losses in accelerator chain
  - Ion beam collimation
- Neutrino and anti-neutrino beams
  - Ion choice limited: life time, similar Q-value,  $\beta^+$  &  $\beta^-$ , Z/A, chemistry...







0 0.02 0.04 0.06 0.08 © [rad]





- Baselines, L (Distance from production to detector)
  - Short ≤ 300 km (Genuine CP asymmetry measurements)
  - Medium
  - Long ~ 7500 (Matter effects)
  - Magic (most optimal sensitivities for physics reach)
- Neutrino energy and angle (γ boost and Q value)
  - Sets optimal L and flux in detector
- Interacting  $v_{\mu}$  in detector
  - Merit factor  $M \sim \gamma / E_0$ ;
- Long Baselines
  - Higher  $\gamma$  or higher ion Q, needs more decays

#### Not evident: physics, budget, existing infrastructures give boundaries



# Ion Choice, $\beta^+$ emitters $(v_e)$

| lsotope    | Ζ  | Α  | A/Z | T <sub>1/2</sub> | $\mathbf{Q}_{\beta \text{ (gs>gs)}}$ | $\mathbf{Q}_{\beta \text{ eff.}}$ | $\mathbf{E}_{\beta \text{ av.}}$ | E <sub>v av.</sub> | <e_lab> (MeV)</e_lab> |
|------------|----|----|-----|------------------|--------------------------------------|-----------------------------------|----------------------------------|--------------------|-----------------------|
|            |    |    |     | S                | MeV                                  | MeV                               | MeV                              | MeV                | (@450 GeV/p)          |
| 8 <b>B</b> | 5  | 8  | 1.6 | 0.77             | 17.0                                 | 13.9                              | 6.55                             | 7.37               | 4145                  |
| 10C        | 6  | 10 | 1.7 | 19.3             | 2.6                                  | 1.9                               | 0.81                             | 1.08               | 585                   |
| 140        | 8  | 14 | 1.8 | 70.6             | 4.1                                  | 1.8                               | 0.78                             | 1.05               | 538                   |
| <b>15O</b> | 8  | 15 | 1.9 | <b>122.2</b>     | 1.7                                  | 1.7                               | 0.74                             | 1.00               | 479                   |
| 18Ne       | 10 | 18 | 1.8 | 1.67             | 3.4                                  | 3.4                               | 1.50                             | 1.86               | 930                   |
| 19Ne       | 10 | 19 | 1.9 | 17.34            | 2.2                                  | 2.2                               | 0.96                             | 1.25               | 594                   |
| 21Na       | 11 | 21 | 1.9 | 22.49            | 2.5                                  | 2.5                               | 1.10                             | 1.41               | 662                   |
| 33Ar       | 18 | 33 | 1.8 | 0.173            | 10.6                                 | 8.2                               | 3.97                             | 4.19               | 2058                  |
| 34Ar       | 18 | 34 | 1.9 | 0.845            | 5.0                                  | 5.0                               | 2.29                             | 2.67               | 1270                  |
| 35Ar       | 18 | 35 | 1.9 | 1.775            | 4.9                                  | 4.9                               | 2.27                             | 2.65               | 1227                  |
| 37K        | 19 | 37 | 1.9 | 1.226            | 5.1                                  | 5.1                               | 2.35                             | 2.72               | 1259                  |
| 80Rb       | 37 | 80 | 2.2 | 34               | 4.7                                  | 4.5                               | 2.04                             | 2.48               | 1031                  |

Ion Choice,  $\beta^{-}$  emitters  $(v_e)$ 

| lsotope | Ζ  | Α         | A/Z | T <sub>1/2</sub> | Q <sub>β (gs&gt;gs)</sub> | $Q_{\beta \text{ eff.}}$ | $E_{\beta av.}$ | E <sub>v av.</sub> | <e_lab>(MeV)</e_lab> |
|---------|----|-----------|-----|------------------|---------------------------|--------------------------|-----------------|--------------------|----------------------|
|         |    |           |     | S                | MeV                       | MeV                      | MeV             | MeV                | (@ 450 GeV/p)        |
| 6He     | 2  | 6         | 3.0 | 0.807            | 3.5                       | 3.5                      | 1.57            | 1.94               | 582                  |
| 8He     | 2  | 8         | 4.0 | 0.119            | 10.7                      | 9.1                      | 4.35            | 4.80               | 1079                 |
| 8Li     | 3  | 8         | 2.7 | 0.838            | 16.0                      | 13.0                     | 6.24            | <b>6.72</b>        | 2268                 |
| 9Li     | 3  | 9         | 3.0 | 0.178            | 13.6                      | 11.9                     | 5.73            | 6.20               | 1860                 |
| 11Be    | 4  | 11        | 2.8 | 13.81            | 11.5                      | 9.8                      | 4.65            | 5.11               | 1671                 |
| 15C     | 6  | 15        | 2.5 | 2.449            | 9.8                       | 6.4                      | 2.87            | 3.55               | 1279                 |
| 16C     | 6  | 16        | 2.7 | 0.747            | 8.0                       | 4.5                      | 2.05            | 2.46               | 830                  |
| 16N     | 7  | 16        | 2.3 | 7.13             | 10.4                      | 5.9                      | 4.59            | 1.33               | 525                  |
| 17N     | 7  | 17        | 2.4 | 4.173            | 8.7                       | <b>3.8</b>               | 1.71            | 2.10               | 779                  |
| 18N     | 7  | 18        | 2.6 | 0.624            | 13.9                      | 8.0                      | 5.33            | 2.67               | 933                  |
| 23Ne    | 10 | <b>23</b> | 2.3 | <b>37.24</b>     | 4.4                       | 4.2                      | 1.90            | 2.31               | 904                  |
| 25Ne    | 10 | 25        | 2.5 | 0.602            | 7.3                       | 6.9                      | 3.18            | 3.73               | 1344                 |
| 25Na    | 11 | 25        | 2.3 | <b>59.1</b>      | 3.8                       | 3.4                      | 1.51            | 1.90               | 750                  |
| 26Na    | 11 | 26        | 2.4 | 1.072            | 9.3                       | 7.2                      | 3.34            | 3.81               | 1450                 |







- Options for Accelerators
- The EURISOL Beta Beam Scenario
- Ion Production
- Loss Management
- R&D





## European Isotope Separation On-Line Radioactive Ion Beam Facility

- Beta Beams is one task
- Related to the radioactive ion production
- Funding from FP6
- Design Report summer 2009

The EURISOL scenario (i)

- Based on CERN boundaries
- Based on existing technology and machine
  - Ion production through ISOL technique
  - Bunching and first acceleration: ECR, linac
  - Rapid cycling synchrotron
  - Use of existing machines: PS and SPS



The EURISOL scenario will serve as reference for further studies and developments: See later for EUROnu





# The EURISOL scenario (ii)

- Ion choice: <sup>6</sup>He and <sup>18</sup>Ne
- Relativistic gamma=100 for both ions
  - SPS allows maximum of 150 (<sup>6</sup>He) or 250 (<sup>18</sup>Ne)
  - Gamma choice optimized for physics reach
- Opportunity to share a Mton Water Cerenkov detector with a CERN super-beam, proton decay studies and a neutrino observatory (Frejus)








R&D for Beta Beams, 13 Jan 2009, Elena Wildner

Present Laboratory

Future Laboratory \_\_\_\_\_ with Water Cerenkov Detectors

### Options for production



- ISOL method at 1-2 GeV (200 kW)
  - >1 10<sup>13</sup> <sup>6</sup>He per second
  - <8 10<sup>11</sup> <sup>18</sup>Ne per second
  - Studied within EURISOL
- Direct production
  - >1 10<sup>13</sup> <sup>6</sup>He per second
  - 1 10<sup>13</sup> <sup>18</sup>Ne per second
  - Studied at LLN, Soreq, WI and GANIL
- Production ring
  - 10<sup>14</sup> (?) <sup>8</sup>Li
  - >10<sup>13</sup> (?) <sup>8</sup>B
  - Will be studied within EUROv

Aimed: He 2.9 10<sup>18</sup> (2.0 10<sup>13</sup>/s) Ne 1.1 10<sup>18</sup> (2.0 10<sup>13</sup>/s)

#### Courtesy M. Lindroos

#### N.B. Nuclear Physics has limited interest in those elements $\rightarrow$ Production rates not pushed!





### Options for Accelerators

- The EURISOL Beta Beam Scenario
- Ion Production
- Loss Management
- R&D







- Converter technology preferred to direct irradiation (heat transfer and efficient cooling allows higher power compared to insulating BeO).
- <sup>6</sup>He production rate is  $\sim 2x10^{13}$  ions/s (dc) for  $\sim 200$  kW on target.

Projected values, known x-sections!

### <sup>18</sup>Ne (Direct Production)

#### Geometric scaling

- Producing 10<sup>13</sup> <sup>18</sup>Ne could be possible with a beam power (at low energy) of 2 MW (or some 130 mA <sup>3</sup>He beam on MgO).
- To keep the power density similar to LLN (today) the target has to be 60 cm in diameter.
- To be studied:
  - Extraction efficiency
  - Optimum energy
  - Cooling of target unit
  - High intensity and low energy ion linac
  - High intensity ion source

#### S. Mitrofanov and M. Loislet at CRC, Belgium







<sup>6</sup>He (Two Stage ISOL)



- Studied <sup>9</sup>Be(n,α)<sup>6</sup>He,
  <sup>11</sup>B(n,α)<sup>8</sup>Li and <sup>9</sup>Be(n,2n)<sup>8</sup>Be production
- For a 2 mA, 40 MeV deuteron beam, the upper limit for the <sup>6</sup>He production rate via the two stage targets setup is ~6.10<sup>13</sup> atoms per second.



T.Y.Hirsh, D.Berkovits, M.Hass (Soreq, Weizmann I.)

### New approaches for ion production

"Beam cooling with ionisation losses" – C. Rubbia, A Ferrari, Y. Kadi and V. Vlachoudis in NIM A 568 (2006) 475–487

"Development of FFAG accelerators and their applications for intense secondary particle production", Y. Mori, NIM A562(2006)591







### Options for Accelerators

- The EURISOL Beta Beam Scenario
- Ion Production
- Loss Management
- R&D



### Radiation: Engineering issues

- Radiation safety
  - 88% of <sup>18</sup>Ne and 75% of <sup>6</sup>He ions are lost between source and injection into the Decay Ring
  - Detailed studies on RCS (manageable)
  - PS preliminary results available (heavily activated, 1 s flat bottom)
  - SPS and Decay Ring studies ongoing
- Safe collimation of ions during stacking, ongoing
  - ~1 MJ beam energy/cycle injected, equivalent ion number to be removed, ~25 W/m average
- Magnet protection (PS and Decay Ring manageable)
- Dynamic vacuum, studies ongoing
- Tritium and Sodium production in the ground water needs to be studied when site known (Magistris and Silari, 2002)



Momentum collimation: ~5\*10<sup>12</sup> <sup>6</sup>He ions to be collimated per cycle
 Decay: ~5\*10<sup>12</sup> <sup>6</sup>Li ions to be removed per cycle per meter



### Longitudinal Merging in DR

Mandatory for success of the  $\gamma$  = 100 beta-beam concept (need for duty cycle for background suppression)

Lifetime of ions (minutes) is much longer than cycle time (seconds) of a beta-beam



к&D tor Beta Beams, 13 Jan 2009, Elena Wildner



### Decay Ring Stacking: experiment in CERN PS



#### Ingredients

- h=8 and h=16 systems of PS.
- Phase and voltage variations.





#### S. Hancock, M. Benedikt and J-L.Vallet, CERN



### Barrier Buckets in the Decay Ring



Courtesy: P.Beller et al.

### Peak Power Deposition in Decay Ring Lattice design with

Heat Deposition study in Decay Ring

absorbers between dipoles: A. Chancé and J. Payet, CEA Saclay

#### E. Wildner, CERN



500

Q1

Liners with cooling

300

Z (cm)

cable along magnet (FLUKA)

12

4

0

100

Open Midplane magnets

400



en Midplane Dipole for Decay Ring



 $\cos\theta$  design open midplane magnet

Manageable (7 T operational) with Nb -Ti at 1.9 K Aluminum spacers possible on midplane to retain forces:

- gives transparency to the decay products
- Special cooling and radiation dumps may be needed inside yoke.

#### J. Bruer, E. Todesco, CERN





### Options for Accelerators

- The EURISOL Beta Beam Scenario
- Ion Production
- Loss Management
- R&D



### EUROv DS (i)

#### Comparison

- Superbeam (v-production on target)
- v-factory (decaying nuons in storage ring)

Beta Beams

https://espace.cern.ch/EURObeta/shared%20documents/EUROnu-proposal.doc



EUROv DS (i)

| Work<br>package<br>No | Work package title                           | Type of activity | Lead<br>participan<br>No | Person-<br>t months | Start<br>month | End<br>month |
|-----------------------|----------------------------------------------|------------------|--------------------------|---------------------|----------------|--------------|
| 1                     | Management and<br>Knowledge<br>Dissemination | MGT              | 1                        | 92                  | 1              | 48           |
| 2                     | Super-Beam                                   | RTD              | 2                        | 333                 | 1              | 48           |
| 3                     | Neutrino Factory                             | RTD              | 5                        | 282                 | 1              | 48           |
| 4                     | Beta Beam                                    | RTD              | 3                        | 295                 | 1              | 48           |
| 5                     | Detector<br>Performance                      | RTD              | 4                        | 199                 | 1              | 48           |
| 6                     | Physics Reach                                | RTD              | 6                        | 206                 | 1              | 48           |
|                       | TOTAL                                        |                  |                          | 1407                |                |              |
|                       |                                              |                  |                          |                     |                |              |

3=CERN, coordinator: E. Wildner

### The beta-beam in EUROv DS (ii)



- The study will focus on production issues for <sup>8</sup>Li and <sup>8</sup>B
  - <sup>8</sup>B is highly reactive and has never been produced as an ISOL beam
  - Production: enhanced direct production
    - Ring lattice design
    - Cooling
    - Collection of the produced ions (UCL, INFN, ANL), release efficiencies and cross sections for the reactions
    - Sources ECR (LPSC, GHMFL)
    - Supersonic Gas injector (PPPL)
- Parallel studies
  - Multiple Charge State Linacs (P Ostroumov, ANL)
  - Intensity limitations

https://espace.cern.ch/EURObeta/default.aspx

### The beta-beam in EURONU DS (iii)

Optimization of the Decay Ring (CERN, CEA, TRIUMF)

- Lattice design for new ions
- Open midplane superconducting magnets
- R&D superconductors, higher field magnets
- Field quality, beam dynamics
- Injection process revised (merging, collimation)
- A new PS?
  - Magnet protection system
  - Intensity limitations?
- Overall radiation & radioprotection studies

### The beta-beam in EURONU DS (iii)



- Lattice design for new ions
- Open midplane superconducting magnets
- R&D superconductors, higher field magnets
- Field quality, beam dynamics
- Injection process revised (merging, collimation)
- A new PS?
  - Magnet protection system
  - Intensity limitations?
- Overall radiation & radioprotection studies

High field dipole model



EUCARD Participants: CEA-DSM-Irfu, CERN, Wroclaw Technical University Aim: Design, build and test a 1.5 m long, 100 mm aperture dipole model with a design field of 13 T using Nb<sub>3</sub>Sn high current Rutherford cables.

#### Several concepts' are being studied already





#### $\cos 2\theta$ Quadrupoles for LHC upgrade phaseII



#### F. Borgnolutti, E. Todesco, CERN

### 102 T/m Quadrupole

| coil parameters |         |         |        |        |            |             |         |  |  |
|-----------------|---------|---------|--------|--------|------------|-------------|---------|--|--|
| Block Nº        | Nb Cond | r (mm)  | φ()    | a (°)  | cable type | current (A) | grading |  |  |
| 1               | 25      | 100.000 | 0.143  | 0.000  | TQ15MM     | 13000       | 1.000   |  |  |
| 2               | 9       | 100.000 | 26.013 | 24.209 | TQ15MM     | 13000       | 1.000   |  |  |
| 3               | 45      | 115.750 | 0.124  | 0.000  | TQ15MM     | 13000       | 1.000   |  |  |

- Aperture diameter
  - 200 mm
- Gradient
  - ssG = 129 T/m
  - Gn = 102 T/m → margin of 20%
- Current
  - Ss current =14950 A
  - In = 11960 A

F. Borgnolutti, E. Todesco, CERN







### The beta-beam in EURONU DS (iii)



- Lattice design for new ions
- Open midplane superconducting magnets
- R&D superconductors, higher field magnets
- Field quality, beam dynamics
- Injection process revised (merging, collimation)
- A new PS?
  - Magnet protection system
  - Intensity limitations?
- Overall radiation & radioprotection studies

## Greenfield Studies



- EUROv framework concentrates on production
  - EURISOL Scenario still valid
- BUT is this the best way
  - Budget
  - Do we get what physicists want
- Greenfield studies for comparison
- Upgrades of CERN



### Greenfield Studies: gamma

| New SPS |        | Civil<br>engineering |                                    | Magn<br>R&D              | et<br>)              |                                       |
|---------|--------|----------------------|------------------------------------|--------------------------|----------------------|---------------------------------------|
| 500     |        | 4676                 | 20987                              |                          | 15.6                 |                                       |
| 350     |        | 3273                 | 14691                              |                          | <u>10.</u>           | <u>9</u>                              |
| 200     |        | 1870                 | 8395                               |                          | 6.2                  |                                       |
| 150     |        | 1403                 | 629                                | 96                       | 4.7                  |                                       |
| 100     | ę      | 935                  | 419                                | )7                       | 3.1                  |                                       |
| Gamma   | F<br>[ | Rigidity<br>[Tm]     | Ring<br><u>T=5</u><br><u>f=0.3</u> | length<br><u>T</u><br>36 | Dipo<br>rho=<br>Leng | le Field<br><u>300 m</u><br>ath=6885m |



### CERN Upgrades

EURO♥





### CERN Upgrades: benefits for Physics

| STAGE                                     | 1                             | 2                                             | 3                                   | 4                                          |
|-------------------------------------------|-------------------------------|-----------------------------------------------|-------------------------------------|--------------------------------------------|
| DESCRIPTION<br>(new accelerator)          | Linac4<br>PSB<br>PS<br>SPS    | Linac4<br>PSB<br>PS2 or PS2+<br>(& PS)<br>SPS | Linac4<br>SPL<br>PS2 or PS2+<br>SPS | Linac4<br>SPL<br>PS2 or PS2+<br>SPS+       |
| Performance of<br>LHC injectors<br>(SLHC) | +<br>Ultimate beam<br>from PS | ++<br>Ultimate beam from<br>SPS               | ++<br>Maximum SPS<br>performance    | +++<br>Highest performance<br>LHC injector |
| Higher energy<br>LHC                      | -                             | -                                             | -                                   | +++                                        |
| β beam                                    | -                             | -                                             | ++ (γ ~150 <sup>e</sup> He)         | ++ (γ ~350 ºHe)                            |
| v Factory                                 | -                             | -                                             | +++ (~5 GeV prod.<br>beam)          | +++ (~5 GeV prod.<br>beam)                 |
| <b>k</b> , μ                              | -                             | ~150 kW beam at<br>50 GeV                     | ~400 kW beam at<br>50 GeV           | ~400 kW beam at<br>50 GeV                  |
| EURISOL                                   | -                             | -                                             | +++                                 | +++                                        |



#### Summary

- The EURISOL beta-beam conceptual design report will be presented in second half of 2009
  - First coherent study of a beta-beam facility
- Continuation of the work: a beta-beam facility using <sup>8</sup>Li and <sup>8</sup>B
  - Experience from EURISOL
  - First results will come from Eurov DS

beta beam WP started 1 Sept. 2008 (4 year study)

Acknowledgements



We acknowledge the support of the European Community Research Infrastructure Activity under the FP6 programme "Structuring the European Research Area"

(CARE, contract number RII3-CT-2003-506395).

Particular thanks to

M. Lindroos,

M. Benedikt,

A. Fabich,

for contributions to the material presented.

### EUROv DS budget



| Participant                 | Participant short<br>name |                         | Estimated eligible   |                | Requested FC |               |                |              |
|-----------------------------|---------------------------|-------------------------|----------------------|----------------|--------------|---------------|----------------|--------------|
| number in this<br>project » |                           | RTD / Innovation<br>(A) | Demonstration<br>(B) | Management (C) | Other (D)    | Total A+B+C+D | Total receipts | contribution |
| 1                           | STFC                      | 2,509,199.00            | 0.00                 | 904,071.00     | 0.00         | 3,413,270.00  | 0.00           | 890,463.00   |
| 2                           | CEA                       | 824,330.00              | 0.00                 | 0.00           | 0.00         | 824,330.00    | 0.00           | 242,053.00   |
| 3                           | CERN                      | 1,937,770.95            | 0.00                 | 148,800.00     | 0.00         | 2,086,570.95  | 0.00           | 623,086.00   |
| 4                           | Glasgow                   | 318,163.20              | 0.00                 | 0.00           | 0.00         | 318,163.20    | 0.00           | 124,714.00   |
| 5                           | Imperial                  | 771,451.20              | 0.00                 | 0.00           | 0.00         | 771,451.20    | 0.00           | 250,703.00   |
| 6                           | CSIC                      | 508,585.00              | 0.00                 | 0.00           | 0.00         | 508,585.00    | 0.00           | 195,808.00   |
| 7                           | CNRS                      | 2,188,441.60            | 0.00                 | 133,977.60     | 0.00         | 2,322,419.20  | 0.00           | 660,322.00   |
| 8                           | CUT                       | 360,843.20              | 0.00                 | 0.00           | 0.00         | 360,843.20    | 0.00           | 188,043.00   |
| 9                           | UDUR                      | 282,128.00              | 0.00                 | 0.00           | 0.00         | 282,128.00    | 0.00           | 92,240.00    |
| 10                          | INFN                      | 607,000.00              | 0.00                 | 0.00           | 0.00         | 607,000.00    | 0.00           | 156,984.00   |
| 11                          | MPG                       | 458,657.00              | 0.00                 | 0.00           | 0.00         | 458,657.00    | 0.00           | 122,380.00   |
| 12                          | UOXF.DL                   | 7,838.40                | 0.00                 | 0.00           | 0.00         | 7,838.40      | 0.00           | 5,064.00     |
| 13                          | UniSofia                  | 136,000.00              | 0.00                 | 0.00           | 0.00         | 136,000.00    | 0.00           | 81,000.00    |
| 14                          | Warwick                   | 324,739.20              | 0.00                 | 0.00           | 0.00         | 324,739.20    | 0.00           | 74,369.00    |
| 15                          | UCL                       | 1,070,188.80            | 0.00                 | 0.00           | 0.00         | 1,070,188.80  | 0.00           | 318,188.00   |
| TOTAL                       |                           | 12,305,335.55           | 0.00                 | 1,186,848.60   | 0.00         | 13,492,184.15 | 0.00           | 4,025,417.00 |

# Part III Beta-Beams @ DESY ?

### **Neutrino-Beams: Two Alternative Concepts**



### **Conventional Neutrino-Beam from SPL**

Protonbeam: part of the LHC-upgrade 2.2 GeV / 4 MW - 10<sup>16</sup> p+/sec <E<sub>v</sub>> = 260 MeV



10% of this intensity is sufficient

LHC Upgrade Plan



### Why DESY ?






### **Conceptional Layout: Preacceleration**



# **Conceptual Design: Intensities & Time Structure**



# **Technological Challenges**

Very first analysis:

- Ion Source
- Dipoles into straight section (12 T)
- Higher Order Modes in the cavities
  ? RF peak power ?

# Ion Source

#### Copy of EURISOL @ DESY much too expensive

#### Idee von T. Hirsch/M. Hass Weizmann





 $^{6}\text{He}$  production yields for a constant target volume and for different R to D ratios These results are for a 785.4 cm  $^{3}$  cone target and for R  $_{T}$  = 5 cm





SARAF @ Soreq NRC: 40 MeV d-Beam 2 mA

### Ion Source

### a dream ?



#### Problem: Puls charge of deuteron beam is too large

### Ion Source

### A more realistic Idea ?



Production of ions at start of the cycle Ionize and store in the plasma-cell of an ECR-source Extract bunches with electrostatic lenses as a bunch train

### Cavities

#### TESLA Technology suited ?



bunch-train similar to TESLA trains except bunch spacing !

TESLA: 100 m beta-beam: 92 cm → 2.2 A

Problem: Higher Order Modes



Plots from Walter Winter / Patrick Huber

### **Physik Potentzial**

beta-beam @ DESY Super-beam from SPL Water-Cerenkov Det @ Frejus



very similar sensitivity

### Status

- FP7 EUROnu Projekt (CERN): WP beta-beams
- Cooperation with Weizmann-Institute on <sup>6</sup>He production May 2009: First measurements on <sup>6</sup>He production (SARAF ?)
- Compare Physics potential: CERN-Frejus / DESY-Frejus
- Submitted funding request to BMBF:
  - Physics simulation: Verification of Potential (v-Oscillations) Accelerator: conceptional Layout

