

中國科學院為能物服為完備 Institute of High Energy Physics Chinese Academy of Sciences

Effects of Quad Fringe Fields and Magnetic Interference

Demin Zhou IHEP, Beijing

Joint DESY and University of Hamburg Accelerator Physics Seminar Feb. 26, 2008, DESY, Hamburg

Outline

Introduction

e Estimation of tune shift

- Quad fringe fields
- Magnetic interference
- Linear fringe map
- Equivalent hard edge model
- Numerical test
- Summary

-0.4

10/11/2008 10:02:00

The **BEPCII**

- An upgrade project of the Beijing Electron Positron Collider (BEPC)
- A factory-like double-ring collider@τ-Charm energy region
- Providing beams to both high energy physics experiments and synchrotron radiation users
- Constructed in the same tunnel for BEPC
- Keeping all previous beamlines unchanged

"Three" rings in the same tunnel

BSR: Bepcii Synchrotron Ring BER: Bepcii Electron Ring BPR: Bepcii Positron Ring

中國科学院為能物用加完所 Institute of High Energy Physics Chinese Academy of Sciences

Main parameters of **BEPCII**

Parameters	Unit	Colliding mode	SR mode	
Operation energy (E)	GeV	1.0–2.1	2.5	
Injection energy (E_{inj})	GeV	1.55–1.89	1.89	
Circumference (C)	m	237.53	241.13	
$\boldsymbol{\beta}^{*}$ -function at IP ($\boldsymbol{\beta}_{x}^{*}/\boldsymbol{\beta}_{y}^{*}$)	cm	100/1.5		
Tunes $(v_x/v_y/v_s)$		6.53/5.58/0.034	7.28/5.18/0.036	
Hor. natural emittance $(\varepsilon_{x\theta})$	mm∙mr	0.14 @1.89 GeV	0.12	
Damping time $(\tau_x/\tau_y/\tau_e)$		25/25/12.5 @1.89 GeV	12/12/6	
RF frequency (f _{rf})	MHz	499.8	499.8	
RF voltage per ring (V_{rf})	MV	1.5	1.5~3.0	
Bunch number (N _b)		93		
Bunch spacing	m	2.4		
Beam current	mA	910 @1.89 GeV	250	
Bunch length (cm) σ_l	cm	~1.5		
Impedance $ Z/n _0$	Ω	~ 0.2		
Crossing angle	mrad	±11		
beam-beam parameter		0.04/0.04		
Beam lifetime	hrs.	3.0	15	
luminosity@1.89 GeV	$10^{33} \text{cm}^{-2} \text{s}^{-1}$	1		

波形读入方式; 实时紧张	
	2 Mary Anna Dynnig dan barang mayan ya Kasan (Manada) Mary Ang Burgis ay dan ani saya cabini a Kasan dan Jugis biran
Eller Stan	

Milestones

Mar. 2006: Ring installation started
Nov. 12, 2006: Commissioning started
Nov. 18, 2006: Beam accumulated in BSR
Dec. 25, 2006: Beam provided to SR users
Feb. 09, 2007: e- beam stored in BER
Mar. 04, 2007: e+ beam stored in BPR
Mar. 25, 2007: First collision observed
Jun. 15, 2007: Second SR run
Jan. 29, 2008: 500mA*500mA collision Luminosity exceeded 1x10³²cm⁻²s⁻¹

Critical success factors in the commissioning (personal viewpoints)

Motivated team

- Good preparation and management
- **@** Team work spirit

Components with very high quality assurance

- Magnets
- Power supply
- Beam instrumentation: BPM, BLM, ...
- Feedback system

Control and diagnostics tools with high efficiency

- BBA and COD correction
- Optics correction based on response matrix
- Injection control
- Collision tuning

Challenges (personal viewpoints)

- Complicated design scheme
 - Non-symmetric lattice for collision
 - Mirror symmetric lattice for SR

- Very tight schedule for installation and commissioning
- Commissioning
 - **W** Hardware fault detection with beam, such as Magnet, BPM, etc.
 - Improvised softwares
 - Ramping with wigglers (E=1.89GeV->2.5GeV)
 - Sensitivity of the lattice to imperfections
 - Beam instabilities and intensity limitations
 - Lifetime

Difference between design and measured optics

Beta function of BSR (half of the mirror symmetric ring)

國科學院為能物財為完并 Institute of High Energy Physics Chinese Academy of Sciences

Difference between design and measured optics (cont)

Quadrupole fudge factor AF: The change of quadrupole strengths to restore the optics

 $\Delta K_1 = K_1 \Delta AF \qquad \Delta AF = AF - 1$

SR optics BSR_07jan01: Nominal tunes: (7.27, 5.37) Measured: (7.205, 5.281) Negative tune shift: (-0.065, -0.09)

Difference between design and measured optics (cont)

BPR AF: 1.01~1.02

Why negative tune shifts and large fudge factors of 1.01~1.02?

@ Fudge factors: to compensate gradient errors from

- Magnet alignment (random)
- Magnetic measurement (X)
- Paulty powering (X)
- **Pringe fields**
- Magnetic interference
- Pringe fields and magnetic interference

are reasonable candidates

- **•** Fringe fields neglected in the design stage
 - but important for small rings
- Short distances between quads and sexts due to limited spaces

Outline

Introduction

- Estimation of tune shift
 - Quad fringe fields
 - Magnetic interference
- Linear fringe map
- Equivalent hard edge model
- Numerical test
- Summary

Quadrupole modeling

Weight and the second secon

$$L_0 = \frac{1}{G_0} \int_{-\infty}^{\infty} G(s) ds$$

Trapezoidal fringe model Approximation of fringe fields L_0 Pringe extension: SAD definition $f_1 = \sqrt{24} \int_0^\infty \frac{\widetilde{G}(s)}{G_0} (s - s_0) ds$ 0.8 0.6 0.4 $\widetilde{G}(s) = \begin{cases} G(s) - G_0 & 0 < s < s_0 \\ G(s) & s > s_n \end{cases}$ 0.2 -0.4 -0.20.2 0.4 SAD: http://acc-physics.kek.jp/sad nstitute of High Energy Physic

Linear magnet imperfections (cont)

Linear magnet imperfections (cont)

Some conclusions

Quad fringe fields do lead to tune shift and beta-beating

- **@** Tune shift is always negative
- **@** Tune shift is proportional to quad focusing strength
- [®] Tune shift is proportional to alpha function, the slope of beta function

Tune shift is proportional to the square of fringe extension

$$\Delta \nu = \Delta \nu_{in} + \Delta \nu_{out} = \frac{1}{48\pi} K_0 (\alpha_{in} - \alpha_{out}) f_1^2$$

中國科学院為能物理研究所 Institute of High Energy Physics Chinese Academy of Sciences

Tune shift computation using SAD

SAD can treat fringe fields of quads and bends

- Choose SR mode: BSR_07jan01
- **•** Totally 7 types of quads in SR ring

Ring Tune Adjust	IR Normal Coll	PINJ	EINJ	Chromaticity	Dynamic Aperture	Poincare Map	Hagnat	
= V _s	7.28090	72800	Ō					
. Ny	5.10090	5.1800	0			Venture Effection		
🔳 β _κ ' (m)	10.01359	10.0135	9		1.0	valuel incellion	4	
= β, (m)	9.90663	9,9856	3				1	
β _x GNOP(m)	10.45900	10.4590	0	5	then ends	1 10		
💼 (б _р ансерт)	15.79600	15.7950	0 11	4 4 A	UNA AAAA	1 (11)	11.	MAN 1 1 (1
β _x ⊕SYME(m)	23.00303	23.00393	1	E ALLAN	X IA WAY	KKIN	1 J. Au	MALLAN M
_ β _g @SVME(m)	11.04392	145444	3 19		NEA AURI	VINV V	MARTIN	NW/WW
β _× @SYMW(m)	22.99972	23.0038	3	- WW	11 10	early .	Maril	All
β@SVMW(m)	14.88532	145444	3	1				
β _n geradeκ(m)	18.1847.4	10.0350	5	0 + + +		· · · · · ·		
_ β _κ @R10EK(m)	10.40753	10.3325	9	1.5	A		1	
■ β _{x,max} @R1ORF(m)	11.67019	16.0000		J. A	A AL		Sec.	- A 1
β _{g,max} GR1ORF(m)	15.81450	16.0000) <u>5</u>	"E MAP"		MAG	NAAA	E AMAN
β _{x,max} @AltRing(m)	23.27711	28.00001		SALVY		VVVV	V V	
≡ β _{g, max} ⊘AliFing(m)	28.09000	28,0000	0		1			~
_ β _{K, min} @AllRing(m)	1.01055	1.00001	0		VV			
_ β _{y, mis} @ellRing(m)	1.89342	1.0800	0	550	0	50	100	150
	Match			MUNITAR		ANNI NU AL	HINH	LA LA DEPENDENTI ALL
	Lore L			Linh	a a a a a a a a a a a a a a a a a a a	den de la desta	, in the second s	L.L.L. bretek betek bete
Back	History				23 ION IN 1993	1993 C C C C C C C C C C C C C C C C C C	a second s	S COLE SCHOOLSCHOLSCHOLSCHOLSCHOLSCHOLSCHOLSCHO

Adjacent to Sexts

Special quads in IR

Quad. type	105Q	110Q	160Q	Q1A	Q1B	Q2/Q3	QSR	
Effective length (m)	0.31/0.34	0.408	0.646	0.254	0.464	0.548	0.24	
Aperture (mm)	52.5	55	80	58	67	52	52.5	Radius
Fringe length (f ₁) (m)	0.154	0.167	0.238	0.115	0.172	0.133	0.109	5
Number	44	10	6	2	2	4	1	中國科學院為能物理研究所 Institute of High Energy Physics

Tune shift computation using SAD (cont)

Tune shift for each quad (half SR ring)

Outline

Introduction

- Estimation of tune shift
 Quad fringe fields
 Magnetic interference
 Linear fringe map
 Equivalent hard edge model
- Numerical test
- Summary

Simulation using OPERA-3D/TOSCA (Y. Chen)

Quad (105Q) and Sext (130S) assembly
36 sexts in a ring divided into 4 groups

@ Distance of yokes: from 6cm to 25cm

Simulation using OPERA-3D/TOSCA (Y. Chen) (cont)

- Quad field integral decay
 - ~0.6% @17.3cm of yoke distance (BEPCII case)
- Simulation agreed well with point-to-point measurement
- Distance of yokes should be larger than 25cm,

if decay<0.1% required. Quad aperture radius: 5.25cm

Measurement

Decay vs. yoke distance Simulation and measurement field gradient difference (simulation) @17.3cm of yoke distance

國科学院為能物招加完備 Institute of High Energy Physics Chinese Academy of Sciences

Simulation using OPERA-3D/TOSCA (Y. Chen) (cont)

Large aperture=>long fringe extension=>large field integral decay

Tune shift computation using SAD -- summary

BSR_07jan01

- Turn on the bend fringe fields: (0.0, -0.0226)
- Turn on the quad fringe fields: (-0.0360, -0.0402)
- Turn on both the bend and quad fringe fields: (-0.0360, -0.0632)
- **@** Turn on magnetic interference between quads and sexts:

(-0.028, -0.037)

- Turn on fringe fields and magnetic interference: (-0.064, -0.102)
- Measured tune shift with beam: (-0.065, -0.09)
- Basically, estimated tune shift agreed well with beam based measurement (measured tune shift and fudge factors)

Outline

- Introduction
- e Estimation of tune shift
 - Quad fringe fields
 - Magnetic interference
- Linear fringe map
- Equivalent hard edge model
- Numerical test
- Summary

Lie Algebra technique

- Hamiltonian system
- Solve the problem analytically
- Perturbation treatment if necessary
- **@** Preserve the semplecticity of the solution

$$\vec{r}'' = f(\vec{r}, \vec{r}') \rightarrow X'_i = [H, X_i]$$

$$X^{(f)} = e^{-:\int_0^t H(X,t')dt':} X^{(i)}$$

Generating function:
$$F(t) = \int_0^t H(X,t')dt'$$

Step 1: s-dependent Hamiltonian in the field of a normal quad

- Frenet-Serret coordinate system
- On-momentum particle
- Expand H(s) in polynomials

 $H(q, p, t) = e\phi + c\sqrt{(\vec{P} - c\vec{A})^2 + m_0^2 c^2} \qquad \phi : \text{scalar potential} \\ \vec{A} : \text{vector potential} \\ H(s) = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}K(s)(x^2 - y^2) - \frac{1}{4}K'(s)(xp_x + yp_y)(x^2 - y^2) \\ - \frac{1}{12}K''(s)(x^4 - y^4) + \frac{1}{32}K'^2(s)(x^4 - y^4)(x^2 - y^2) \\ + \frac{1}{48}K'''(s)(xp_x + yp_y)(x^4 - y^4) + \frac{1}{256}K^{(4)}(s)(x^4 - y^4)(x^2 + y^2) + O(X^8) \\ \end{pmatrix}$

Ref.[1] J. Irwin and C.X. Wang

nstitute of High Energy Physics Chinese Academy of Sciences

Step 2: Perturbation treatment

- Solutions for s-dependent Hamiltonian system are hard to be found, even for linear system
- Offer clear physical picture of perturbations
- Evaluate the significancy of fringe field effect

Step 3: Linear map (from quad center to far right side)

Step 4: Generating functions

s-dependent dynamical variables: Taylor expansion
 Assumption: fringe region is short
 2rd BCH formula is enough
 X = [x, p_x, v, p_y]^T

$$\begin{split} f_{2}^{-} &= -\int_{s_{1}}^{s_{0}} \overline{H}(s) ds + \frac{1}{2} \int_{s_{1}}^{s_{0}} ds \int_{s}^{s_{0}} ds' [\overline{H}(s), \overline{H}(s')] \\ f_{2}^{-} &= -\int_{s_{0}}^{s_{2}} \overline{H}(s) ds + \frac{1}{2} \int_{s_{0}}^{s_{2}} ds \int_{s}^{s_{2}} ds' [\overline{H}(s), \overline{H}(s')] \\ \overline{H}(s) &= \begin{cases} \widetilde{H}(s, M_{\mathcal{Q}}(s_{0} \to s)X) & s_{1} \leq s \leq s_{0} \\ \widetilde{H}(s, M_{drift}(s_{0} \to s)X) & s_{0} \leq s \leq s_{2} \end{cases} \\ \widetilde{H}(s) = \frac{1}{2} \widetilde{K}(s)(x^{2} - y^{2}) = \begin{cases} \frac{1}{2} [K(s) - K_{0}](x^{2} - y^{2}) & s_{1} \leq s \leq s_{0} \\ \frac{1}{2} K(s)(x^{2} - y^{2}) & s_{0} < s \leq s_{2} \end{cases} \\ \widetilde{H}(s, M_{drift}(s_{0} \to s)X) & s_{0} \leq s \leq s_{2} \end{cases} \\ \widetilde{H}(s) = \frac{1}{2} \widetilde{K}(s)(x^{2} - y^{2}) & s_{0} < s \leq s_{2} \end{cases}$$

Step 4: Generating functions (cont)

Represented by fringe field integrals (FFI)

$$\begin{split} f_{2}^{-} &\cong -\frac{1}{2} I_{0}^{-} (x^{2} - y^{2}) - I_{1}^{-} (xp_{x} - yp_{y}) - \frac{1}{2} I_{2}^{-} (p_{x}^{2} - p_{y}^{2}) \\ &+ \frac{1}{2} K_{0} I_{2}^{-} (x^{2} + y^{2}) + \frac{2}{3} K_{0} I_{3}^{-} (xp_{x} - yp_{y}) + \frac{1}{2} \Lambda_{2}^{-} (x^{2} + y^{2}) \\ f_{2}^{+} &\cong -\frac{1}{2} I_{0}^{+} (x^{2} - y^{2}) - I_{1}^{+} (xp_{x} - yp_{y}) - \frac{1}{2} I_{2}^{+} (p_{x}^{2} - p_{y}^{2}) + \frac{1}{2} \Lambda_{2}^{+} (x^{2} + y^{2}) \\ f_{2} &\cong f_{2}^{-} + f_{2}^{+} + \frac{1}{2} [f_{2}^{-}, f_{2}^{+}] \\ &\approx -(I_{1}^{-} + I_{1}^{+}) (xp_{x} - yp_{y}) - \frac{I_{2}^{-} + I_{2}^{+}}{2} (p_{x}^{2} - p_{y}^{2}) \\ &+ \frac{K_{0} I_{2}^{-}}{2} (x^{2} + y^{2}) + \frac{2K_{0} I_{3}^{-}}{3} (xp_{x} + yp_{y}) + \frac{\Lambda_{2}^{-} + \Lambda_{2}^{+}}{2} (x^{2} + y^{2}) \\ &- \frac{1}{2} I_{0}^{+} (I_{1}^{-} + I_{1}^{+}) (x^{2} + y^{2}) - \frac{1}{2} I_{0}^{+} (I_{2}^{-} + I_{2}^{+}) (xp_{x} + yp_{y}) \end{split}$$

Fringe field integrals

Anti-symmetric assumption not necessary

Fringe field integrals (cont)

Case of BEPCII SR ring

Step 5: Correction matrix of fringe field

Linear fringe effects

First derivation from linear fringe map

Corrected focal length

$$f^{-1} = -T_{21} \cong \sqrt{K_0} \sin(\sqrt{K_0} L_0) e^{-2J_1} - 2J_3 \cos(\sqrt{K_0} L_0)$$

Recalculation of tune shift

$$\begin{bmatrix} \cos(2\pi Q_0) + \alpha \sin(2\pi Q_0) & \beta \sin(2\pi Q_0) \\ -\frac{1+\alpha^2}{\beta} \sin(2\pi Q_0) & \cos(2\pi Q_0) - \alpha \sin(2\pi Q_0) \end{bmatrix}_{out}^{d} MR_x$$

$$= \begin{bmatrix} \cos(2\pi Q) + \alpha \sin(2\pi Q) & \beta \sin(2\pi Q) \\ -\frac{1+\alpha^2}{\beta} \sin(2\pi Q) & \cos(2\pi Q) - \alpha \sin(2\pi Q) \end{bmatrix}_{out}^{out}$$

$$\Delta Q_{out} = Q - Q_0 \cong -\frac{\alpha_{out}}{2\pi} J_1 + \frac{1}{4\pi} \beta_{out} J_3 - \frac{1+\alpha_{out}^2}{4\pi \beta_{out}} J_2 \cong -\frac{\alpha_{out} K_0 f_1^2}{48\pi}$$

$$J_1 \approx I_1 = \frac{1}{24} K_0 f_1^2$$

Outline

- Introduction
- e Estimation of tune shift
 - Quad fringe fields
 - Magnetic interference
- Linear fringe map
- Equivalent hard edge model
- Numerical test
- Summary

Second derivation from linear fringe map – equiv. H. E. model

- Two parameters for symmetric longitudinal
 - field distribution
 - **@ Equivalent strength**
 - **@ Equivalent length**

$$\begin{split} M(-s_{2} \rightarrow s_{2}) &= \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} = \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\sqrt{K_{eq}}L_{eq} & \frac{\sin\sqrt{K_{eq}}L_{eq}}{\sqrt{K_{eq}}} \\ -\sqrt{K_{eq}}\sin\sqrt{K_{eq}}L_{eq} & \cos\sqrt{K_{eq}}L_{eq} \end{bmatrix} \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix} \\ M(-s_{2} \rightarrow s_{2}) &= \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \Delta L \\ 0 & 1 \end{bmatrix} MR_{x} \begin{bmatrix} \cos\sqrt{K_{0}}L_{0} & \frac{\sin\sqrt{K_{0}}L_{0}}{\sqrt{K_{0}}} \\ -\sqrt{K_{0}}\sin\sqrt{K_{0}}L_{0} & \cos\sqrt{K_{0}}L_{0} \end{bmatrix} ML_{x} \begin{bmatrix} 1 & \Delta L \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix} \\ T_{11} &= T_{22} & T_{11} \cdot T_{22} - T_{12} \cdot T_{21} = 1 \end{split}$$

Equivalent strength and length in the focusing plane

$$K_{eq}^{F} \approx K_{0} \left[1 - \left(\frac{6A}{L_{0}^{2}} - \frac{54A^{2}}{L_{0}^{4}} + \frac{12B}{L_{0}^{3}} + \dots \right) + \left(\frac{2A}{5} + \dots \right) K_{0} + O(K_{0}^{2}) \right]$$

$$L_{eq}^{F} \approx L_{0} \left[1 + \left(\frac{6A}{L_{0}^{2}} - \frac{18A^{2}}{L_{0}^{4}} + \frac{12B}{L_{0}^{3}} + \dots \right) - \left(\frac{2A}{5} + \dots \right) K_{0} + O(K_{0}^{2}) \right]$$

$$K_{eq}^{F}L_{eq}^{F} \approx K_{0}L_{0}\left[1 + \left(-\frac{3A^{2}}{L_{0}^{2}} + \frac{2B}{L_{0}} - \frac{2C}{L_{0}} + \dots\right)K_{0} + O(K_{0}^{2})\right]$$

 $2J_1 = A \cdot K_0 + D \cdot K_0^2$ $J_2 = B \cdot K_0$ $J_3 = C \cdot K_0^2$

A, B, C, and D: parameters on fringe profile

$$I_{0}^{-} = \int_{s_{1}}^{s_{0}} \widetilde{K}(s) ds \qquad I_{1}^{-} = \int_{s_{1}}^{s_{0}} \widetilde{K}(s)(s - s_{0}) ds$$
$$I_{2}^{-} = \int_{s_{1}}^{s_{0}} \widetilde{K}(s)(s - s_{0})^{2} ds \qquad I_{3}^{-} = \int_{s_{1}}^{s_{0}} \widetilde{K}(s)(s - s_{0})^{3} ds \qquad \propto K_{0}$$

$$\Lambda_{2}^{-} = \int_{s_{1}}^{s_{0}} ds \int_{s}^{s_{0}} ds' K(s) K(s')(s'-s) \propto K_{0}^{2}$$

$$\Lambda_{2}^{+} = \int_{s_{0}}^{s_{2}} ds \int_{s}^{s_{2}} ds' K(s) K(s')(s'-s) \propto K_{0}^{2}$$

$$\begin{split} J_1 &= (I_1^- + I_1^+) - \frac{2K_0I_3^-}{3} + \frac{1}{2}I_0^+(I_2^- + I_2^+) \\ J_2 &= I_2^- + I_2^+ \ J_3 = K_0I_2^- + (\Lambda_2^- + \Lambda_2^+) - I_0^+(I_1^- + I_1^+) \end{split}$$

 $2J_1 = A \cdot K_0 + D \cdot K_0^2$ $J_2 = B \cdot K_0$ $J_3 = C \cdot K_0^2$

Equivalent strength and length in the defocusing plane

Easily derived from results of focusing plane using analogy

$$\begin{bmatrix} \cosh\sqrt{K}L & \frac{\sinh\sqrt{K}L}{\sqrt{K}} \\ \sqrt{K}\sinh\sqrt{K}L & \cosh\sqrt{K}L \end{bmatrix} = \begin{bmatrix} \cos\sqrt{-K}L & \frac{\sin\sqrt{-K}L}{\sqrt{-K}} \\ -\sqrt{-K}\sin\sqrt{-K}L & \cos\sqrt{-K}L \end{bmatrix}$$

$$K_{eq}^{D} \approx K_{0} \left[1 - \left(\frac{6A}{L_{0}^{2}} - \frac{54A^{2}}{L_{0}^{4}} + \frac{12B}{L_{0}^{3}} + \dots\right) - \left(\frac{2A}{5} + \dots\right)K_{0} + O(K_{0}^{2})\right]$$

$$L_{eq}^{D} \approx L_{0} \left[1 + \left(\frac{6A}{L_{0}^{2}} - \frac{18A^{2}}{L_{0}^{4}} + \frac{12B}{L_{0}^{3}} + \dots\right) + \left(\frac{2A}{5} + \dots\right)K_{0} + O(K_{0}^{2})\right]$$

$$K_{eq}^{D}L_{eq}^{D} \approx K_{0}L_{0}\left[1 - \left(-\frac{3A^{2}}{L_{0}^{2}} + \frac{2B}{L_{0}} - \frac{2C}{L_{0}} + \dots\right)K_{0} + O(K_{0}^{2})\right]$$

中國科学院高能的現別完所 Institute of High Energy Physics Chinese Academy of Sciences

Properties of equiv. H.E. model

z₂=1.3

Outline

- Introduction
- e Estimation of tune shift
 - Quad fringe fields
 - Magnetic interference
- Linear fringe map
- Equivalent hard edge model
- Numerical test
- Summary

Measuremer

Fields measured along axis Slice-20 0.30 -Slice-40 x=30mm, y=0mm Purpose of numerical test Accuracy of linear fringe map Validity of equiv. H.E. model 0.05 Comparison -200 200 400 s (mm) slicing • Numerical calculation using "slicing" method Non-truncated equiv. H.E. model Truncated equiv. H.E. model $K_{eq}^{F} \approx K_{0} \left[1 - \left(\frac{6A}{L_{0}^{2}} - \frac{54A^{2}}{L_{0}^{4}} + \frac{12B}{L_{0}^{3}} + \ldots\right) + \left(\frac{2A}{5} + \ldots\right)K_{0} + O(K_{0}^{2})\right] \qquad \qquad K_{eq}^{F} \approx K_{0} \left[1 + \left(-\frac{6A}{L_{0}^{2}} + \frac{54A^{2}}{L_{0}^{4}} - \frac{12B}{L_{0}^{3}}\right) + \frac{2A}{5}K_{0}\right]$ $L_{eq}^{F} \approx L_{0} \left[1 + \left(\frac{6A}{L_{0}^{2}} - \frac{18A^{2}}{L_{0}^{4}} + \frac{12B}{L_{0}^{3}} + \ldots\right) - \left(\frac{2A}{5} + \ldots\right)K_{0} + O(K_{0}^{2})\right] \implies L_{eq}^{F} \approx L_{0} \left[1 + \left(\frac{6A}{L^{2}} - \frac{18A^{2}}{L^{4}} + \frac{12B}{L^{3}}\right) - \frac{2A}{5}K_{0}\right]$ $K_{eq}^{F}L_{eq}^{F} \approx K_{0}L_{0}[1 + (-\frac{3A^{2}}{L_{0}^{2}} + \frac{2B}{L_{0}} - \frac{2C}{L_{0}} + ...)K_{0} + O(K_{0}^{2})] \qquad \qquad K_{eq}^{F}L_{eq}^{F} \approx K_{0}L_{0}[1 + (-\frac{3A^{2}}{L_{0}^{2}} + \frac{2B}{L_{0}} - \frac{2C}{L_{0}})K_{0}]$

Cases with variables as

- **@** Effective strength
- **@ Effective length**
- Pringe extension
- Full fringe

0.296471

Pocusing functions

4.533219

-2.270982

e Enge function (Default Enge coefficients used in COSY INFINITY **e** Gaussian function $G_{ga}(s) = G_0 \exp(-\pi s^2/d^2)$ $E(s) = \frac{1}{1 + \exp[a_1 + a_2(\frac{s}{D}) + a_3(\frac{s}{D})^2 + a_4(\frac{s}{D})^3 + a_5(\frac{s}{D})^4 + a_6(\frac{s}{D})^5]}$ $\frac{a_1}{a_2} = \frac{a_3}{a_3} = \frac{a_4}{a_4} = \frac{a_5}{a_5}$

1.068627

-0.036391

0.022261

 $\Delta K / K$

-0.065 --0.070 -

Fringe factor (m)

 $K_0 = 2m^{-2}$ $L_0 = 0.6m$

Case of full fringe

In the second second

Proposal of a simple H.E. model

- e First order correction
- Applicable for both focusing and defocusing planes
- Easy implemented in codes not include fringe fields, such as MAD and AT
- More effective for cases of small quad field integral and short fringe extension

$$\begin{split} K_{eq} &= K_0 \left(1 - \frac{f_1^2}{2L_0^2} \right) \qquad L_{eq} = L_0 \left(1 + \frac{f_1^2}{2L_0^2} \right) \\ f_1 &= \sqrt{24 \left| \int_0^\infty \frac{\widetilde{G}(s)}{G_0} (s - s_0) ds \right|} \end{split}$$

Proposal of a simple H.E. model (cont)

Test of the simple model using SAD
 BSR_07jan01, nominal: (7.28, 5.18)
 R30Q02:

 $L_0 = 0.548m$ $K_0 = 0.405$ $f_1 = 0.133m$ $L_{eq} = 0.564m$

Turn on fringe: (7.27994, 5.17979)

Simple model: (7.27994, 5.17979)

@ R2OQ06:

 $L_0 = 0.34m$ $K_0 = 1.46$ $f_1 = 0.154m$ $L_{eq} = 0.375m$ Turn on fringe: (7.27858,5.17944) Simple model: (7.27856,5.17945)

Outline

- Introduction
- e Estimation of tune shift
 - Quad fringe fields
 - Magnetic interference
- Linear fringe map
- Equivalent hard edge model
- Numerical test
- Summary

Summary

- Tune shift in BEPCII rings was well explained by effects of fringe fields and magnet interference.
- A simple method was found to calculate the tune shift due to quad fringe fields.
- Perturbation treatment based on Lie technique is a good approach for quad fringe field effects. It is easy to be extended to calculate nonlinear fringe maps, even magnetic interference included.
- The work will also help to estimate the significancy of fringe fields and magnetic interference in small rings such as CSNS, Proton Therapy Accelerator, etc.
- The simple H.E. model may be applied in MAD and LOCO for linear optics design and compensation.

Acknowledgements

Thanks to Prof. J.Y. Tang, Dr. Y. Chen, Dr. Y.Y. Wei Thanks to the BEPCII commissioning team

References:

[1] J. Irwin and C.X. Wang, Explicit soft fringe maps of a quadrupole, PAC95.

[2] J.G. Wang, Particle optics of quadrupole doublet magnets in Spallation Neutron Source accumulator ring, Phys. Rev. ST Accel. Beams 9, 122401 (2006).

[3] S. Bernal, et al., RMS envelope matching of electron beams from "zero" current to extreme space charge in a fixed lattice of short magnets, Phys. Rev. ST Accel. Beams 9, 064202 (2006).

國科學院為能物間加完所 Institute of High Energy Physics Chinese Academy of Sciences

Thank you for your attention!!

backup

Optics correction

Comparison of SAD and LOCO correction

SAD: with fringe fields of quads and bends, without magnetic interference LOCO: based on beam measurement, include all imperfections

