

Outline

@ Introduction
@ Estimation of tune shift
© Quad fringe fields
© Magnetic interference
© Linear fringe map
© Equivalent hard edge model
© Numerical test
© Summary

The BEPCII

@ An upgrade project of the Beijing Electron Positron Collider (BEPC)
@ A factory-like double-ring collider@ τ-Charm energy region
© Providing beams to both high energy physics experiments and synchrotron radiation users
(e) Constructed in the same tunnel for BEPC
© Keeping all previous beamlines unchanged

"Three" rings in the same tunnel

Main parameters of BEPCII

Parameters	Unit	Colliding mode	SR mode
Operation energy (E)	GeV	1.0-2.1	2.5
Injection energy ($E_{\text {inj }}$)	GeV	1.55-1.89	1.89
Circumference (C)	m	237.53	241.13
β^{*}-function at IP ($\beta_{x}^{*} / \beta_{y}^{*}$)	cm	100/1.5	
Tunes ($v_{x} / v_{v_{y}} / v_{s}$)		6.53/5.58/0.034	7.28/5.18/0.036
Hor. natural emittance (ε_{x})	mm•mr	0.14 @1.89 GeV	0.12
Damping time $\left(\tau_{\mathrm{x}} / \tau_{\mathrm{y}} / \tau_{e}\right)$		25/25/12.5@1.89 GeV	12/12/6
RF frequency ($f_{r f}$)	MHz	499.8	499.8
RF voltage per ring ($V_{r f}$)	MV	1.5	1.5~3.0
Bunch number (N_{b})		93	
Bunch spacing	m	2.4	
Beam current	mA	910 @1.89 GeV	250
Bunch length (cm) σ_{I}	cm	~1.5	
Impedance $\|\mathrm{Z} / \mathrm{n}\|_{0}$	Ω	~ 0.2	
Crossing angle	mrad	± 11	
beam-beam parameter		0.04/0.04	
Beam lifetime	hrs.	3.0	15
luminosity@1.89 GeV	$10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	1	

Milestones

(e) Mar. 2006: Ring installation started
@ Nov. 12, 2006: Commissioning started
(e) Nov. 18, 2006: Beam accumulated in BSR
(e) Dec. 25, 2006: Beam provided to SR users
© Feb. 09, 2007: e- beam stored in BER
@ Mar. 04, 2007: e+ beam stored in BPR
© Mar. 25, 2007: First collision observed
(e) Jun. 15, 2007: Second SR run
. Jan. 29, 2008: 500mA*500mA collision Luminosity exceeded $1 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Critical success factors in the commissioning (personal viewpoints)

(e) Motivated team
© Good preparation and management
© Team work spirit
@ Components with very high quality assurance
© Magnets
@ Power supply
© Beam instrumentation: BPM, BLM, ...
© Feedlback system
© Control and diagnostics tools with high efficiency
© BBA and COD correction
© Optics correction based on response matrix
© Injection control
© Collision tuning

Challenges（personal viewpoints）

© Complicated design scheme
© Non－symmetric lattice for collision
© Mirror symmetric lattice for SR

© Very tight schedule for installation and commissioning
© Commissioning
© Hardware fault detection with beam，such as Magnet，BPM，etc．
© Improvised softwares
© Ramping with wigglers（ $\mathrm{E}=1.89 \mathrm{GeV}->2.5 \mathrm{GeV}$ ）
© Sensitivity of the lattice to imperfections
© Beam instabilities and intensity limitations
© Lifetime

Difference between design and measured optics

Beta function of BSR（half of the mirror symmetric ring）
LOCO model：fitting model based on response matrix measurement LOCO：Linear Optics from Closed Orbits

Difference between design and measured optics (cont)

Quadrupole fudge factor AF:
The change of quadrupole strengths to restore the optics

$$
\Delta K_{1}=K_{1} \Delta A F \quad \Delta A F=A F-1
$$

SR optics BSR_07jan01:
Nominal tunes: $(7.27,5.37) \quad$ Measured: $(7.205,5.281)$
Negative tune shift: $(-0.065,-0.09)$

BSR fudge factors
Y.Y. Wei

Fudge factors indicate an overall positive shift of quad strengths

Tuning BSR @ nominal tune $(7.28,5.18)$...
Tuning BER/BPR @ nominal tune (6.53, 5.58)...

Resonances up to 4th order

Difference between design and measured optics (cont)

BPR AF: 1.01~1.02

Difference between design and measured optics (cont)

BER AF: 1.01~1.02

Why negative tune shifts and large fudge factors of 1.01~1.02?

© Fudge factors: to compensate gradient errors from
© Magnet alignment (random)
@ Magnetic measurement (X)
© Faulty powering (X)
(e) Fringe fields
@ Magnetic interference
© Fringe fields and magnetic interference are reasonable candidates
© Fringe fields neglected in the design stage but important for small rings
© Short distances between quads and sexts due to limited spaces

Outline

© Introduction
© Estimation of tune shift
© Quad fringe fields
© Magnetic interference
© Linear fringe map
© Equivalent hard edge model
© Numerical test
© Summary

Quadrupole modeling

© Hard edge approximation: simple but unphysical

$$
L_{0}=\frac{1}{G_{0}} \int_{-\infty}^{\infty} G(s) d s
$$

© Trapezoidal fringe model
© Approximation of fringe fields
© Fringe extension: SAD definition
$f_{1}=\sqrt{24 \int_{0}^{\infty} \frac{\tilde{G}(s)}{G_{0}}\left(s-s_{0}\right) d s}$
$\widetilde{G}(s)=\left\{\begin{array}{cl}G(s)-G_{0} & 0<s<s_{0} \\ G(s) & s \geq s_{0}\end{array}\right.$
SAD: http://acc-physics.kek.jp/sad

Linear magnet imperfections

Linear magnet imperfections (cont)

(c) The theory

Particle direction
$\frac{d^{2} u}{d s^{2}} \pm\left[K_{0}(s)+k(s)\right] u=0$
$\Delta v=\frac{1}{4 \pi} \oint \beta(s) k(s) d s$
Beta function measurement and manipulation
© Transformation of Courant-Snyder parameters
Gradient error
$\beta(s)=\beta\left(s_{0}\right)-2 \alpha\left(s_{0}\right)\left(s-s_{0}\right)+\frac{1+\alpha^{2}\left(s_{0}\right)}{\beta\left(s_{0}\right)}\left(s, s_{0}\right)^{2}$
$\Delta v=\Delta v_{\text {in }}+\Delta v_{\text {out }}=\frac{1}{48 \pi} K_{0}\left(\alpha_{\text {in }}^{\prime}-\alpha_{\text {out }}^{\prime}\right) f_{1}^{2}$

Linear magnet imperfections（cont）

© Some conclusions
© Quad fringe fields do lead to tune shift and beta－beating
© Tune shift is always negative
© Tune shift is proportional to quad focusing strength
© Tune shift is proportional to alpha function，the slope of beta function
＠Tune shift is proportional to the square of fringe extension

$$
\Delta v=\Delta v_{\text {in }}+\Delta v_{\text {out }}=\frac{1}{48 \pi} K_{0}\left(\alpha_{\text {in }}-\alpha_{\text {out }}\right) f_{1}^{2}
$$

Tune shift computation using SAD

(c) SAD can treat fringe fields of quads and bends
@ Choose SR mode: BSR_07jan01
© Totally 7 types of quads in SR ring

Quad. type	105 Q	110 Q	160 Q	Q 1 A	Q 1 B	$\mathrm{Q} 2 / \mathrm{Q} 3$	QSR
Effective length (m)	$0.31 / 0.34$	0.408	0.646	0.254	0.464	0.548	0.24
Aperture (mm)	52.5	55	80	58	67	52	52.5
Fringe length (fi) (m)	0.154	0.167	0.238	0.115	0.172	0.133	0.109
Number	44	10	6	2	2	4	1

Tune shift computation using SAD (cont)

© Tune shift for each quad (half SR ring)

Estimation: $\Delta v=\Delta v_{\text {in }}+\Delta v_{\text {out }}=\frac{1}{48 \pi} K_{0}\left(\alpha_{\text {in }}-\alpha_{\text {out }}\right) f_{1}^{2}$

Outline

© Introduction
© Estimation of tune shift
© Quad fringe fields
© Magnetic interference
© Linear fringe map
© Equivalent hard edge model
© Numerical test
© Summary

Simulation using OPERA-3D/TOSCA (Y. Chen)

© Quad (105Q) and Sext (130S) assembly
(c) 36 sexts in a ring divided into 4 groups
© Distance of yokes: from 6 cm to 25 cm

Simulation using OPERA-3D/TOSCA (Y. Chen) (cont)

© Quad field integral decay
~0.6\% @17.3cm of yoke distance (BEPCII case)
@ Simulation agreed well with point-to-point measurement
© Distance of yokes should be larger than 25 cm , if decay<0.1\% required. Quad aperture radius: 5.25 cm

Decay vs. yoke distance Simulation and measurement

Measurement
field gradient difference (simulation) @17.3cm of yoke distance

Simulation using OPERA-3D/TOSCA (Y. Chen) (cont)

Large aperture=>long fringe extension=>large field integral decay

Bias of B_{2} vs. Sext current

Field integral decay vs. magnet aperture

Tune shift computation using SAD -- summary

© BSR_07jan01
© Turn on the bend fringe fields: $(0.0,-0.0226)$
© Turn on the quad fringe fields: $(-0.0360,-0.0402)$
© Turn on both the bend and quad fringe fields: ($-0.0360,-0.0632$)
© Turn on magnetic interference between quads and sexts:
(-0.028, -0.037)
© Turn on fringe fields and magnetic interference: ($-0.064,-0.102$)
© Measured tune shift with beam: $(-0.065,-0.09)$
@ Basically, estimated tune shift agreed well with beam based measurement (measured tune shift and fudge factors)

Outline

© Introduction
© Estimation of tune shift
© Quad fringe fields
© Magnetic interference
© Linear fringe map
© Equivalent hard edge model
© Numerical test
© Summary

Lie Algebra technique

© Hamiltonian system
© Solve the problem analytically
(e) Perturbation treatment if necessary
© Preserve the semplecticity of the solution

$$
\begin{aligned}
& \vec{r}^{\prime \prime}=f\left(\vec{r}, \vec{r}^{\prime}\right) \rightarrow X_{i}^{\prime}=\left[H, X_{i}\right] \\
& X^{(f)}=e^{-: \int_{0}^{t} H\left(X, t^{\prime}\right) d t^{\prime}:} X^{(i)}
\end{aligned}
$$

Generating function: $F(t)=\int_{0}^{t} H\left(X, t^{\prime}\right) d t^{\prime}$

Step 1: s-dependent Hamiltonian in the field of a normal quad

© Frenet-Serret coordinate system
© On-momentum particle
© Expand $\mathrm{H}(\mathrm{s})$ in polynomials

$$
\begin{aligned}
& H(q, p, t)=e \phi+c \sqrt{(\vec{P}-c \vec{A})^{2}+m_{0}^{2} c^{2}} \quad \begin{array}{c}
\phi: \text { scalar potential } \\
\vec{A}: \text { vector potential }
\end{array} \\
& H(s)= \frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{1}{2} K(s)\left(x^{2}-y^{2}\right)-\frac{1}{4} K^{\prime}(s)\left(x p_{x}+y p_{y}\right)\left(x^{2}-y^{2}\right) \\
&-\frac{1}{12} K^{\prime \prime}(s)\left(x^{4}-y^{4}\right)+\frac{1}{32} K^{\prime 2}(s)\left(x^{4}-y^{4}\right)\left(x^{2}-y^{2}\right) \\
&+\frac{\frac{1}{48} K^{\prime \prime \prime}(s)\left(x p_{x}+y p_{y}\right)\left(x^{4}-y^{4}\right)+\frac{1}{256} K^{(4)}(s)\left(x^{4}-y^{4}\right)\left(x^{2}+y^{2}\right)+O\left(X^{8}\right)}{}
\end{aligned}
$$

Step 2: Perturbation treatment

@Solutions for s-dependent Hamiltonian system are hard to be found, even for linear system
© Offer clear physical picture of perturbations
© Evaluate the significancy of fringe field effect

$$
\begin{aligned}
& H(s) \cong \frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{1}{2} K(s)\left(x^{2}-y^{2}\right)=H_{0}(s)+\widetilde{H}(s) \\
& H_{0}(s)=\left\{\begin{array}{cc}
\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{1}{2} K_{0}\left(x^{2}-y^{2}\right) & s_{1} \leq s \leq s_{0} \\
\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right) & s_{0}<s \leq s_{2}
\end{array} \quad \tilde{H}(s)=\frac{1}{2} \widetilde{K}(s)\left(x^{2}-y^{2}\right)=\left\{\begin{array}{cc}
\frac{1}{2}\left[K(s)-K_{0}\right]\left(x^{2}-y^{2}\right) & s_{1} \leq s \leq s_{0} \\
\frac{1}{2} K(s)\left(x^{2}-y^{2}\right) & s_{0}<s \leq s_{2}
\end{array}\right.\right. \\
& \text { Ref.[1] J. Irwin and C.X. Wang }
\end{aligned}
$$

Step 3：Linear map（from quad center to far right side）

e Map of ideal quad
© Map of fringe
© Map of drift

$$
\begin{aligned}
& M\left(s_{1} \rightarrow s_{2}\right)=R_{-}\left(s_{1} \rightarrow s_{0}\right) R_{+}\left(s_{0} \rightarrow s_{2}\right) \\
& R_{-}\left(s_{1} \rightarrow s_{0}\right)=M_{Q}\left(s_{1} \rightarrow s_{0}\right) e^{f_{2}:} \\
& R_{+}\left(s_{0} \rightarrow s_{2}\right)=e^{: f_{2}^{\dagger} ;} M_{d r i f t}\left(s_{0} \rightarrow s_{2}\right) \\
& R_{f}=e^{f_{2}^{-}} e^{: f_{2}^{+}}=e^{: f_{2}=} \\
& M_{\text {drift }}\left(s_{0} \rightarrow s\right) \leftrightarrow\left[\begin{array}{cccc}
1 & s-s_{0} & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & s-s_{0} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
M_{\varrho}\left(s_{1} \rightarrow s\right) \leftrightarrow\left[\begin{array}{cccc}
\cos \sqrt{K_{0}} s & \frac{\sin \sqrt{K_{0}} s}{\sqrt{K_{0}}} & 0 & 0 \\
-\sqrt{K_{0}} \sin \sqrt{K_{0}} s & \cos \sqrt{K_{0}} s & 0 & 0 \\
0 & 0 & \cosh \sqrt{K_{0} s} & \frac{\sinh \sqrt{K_{0}} s}{\sqrt{K_{0}}} \\
0 & 0 & \sqrt{K_{0}} \sinh \sqrt{K_{0}} s & \cosh \sqrt{K_{0}} s
\end{array}\right]
$$

Step 4: Generating functions

© s-dependent dynamical variables: Taylor expansion
© Assumption: fringe region is short
© 2 rd BCH formula is enough

$$
X=\left[x, p_{x}, y, p_{y}\right]^{T}
$$

$$
f_{2}^{-}=-\int_{s_{1}}^{s_{0}} \bar{H}(s) d s+\frac{1}{2} \int_{s_{1}}^{s_{0}} d s \int_{s}^{s_{0}} d s^{\prime}\left[\bar{H}(s), \bar{H}\left(s^{\prime}\right)\right]
$$

$$
f_{2}^{-}=-\int_{s_{0}}^{s_{2}} \bar{H}(s) d s+\frac{1}{2} \int_{s_{0}}^{s_{2}} d s \int_{s}^{s_{2}} d s^{\prime}\left[\bar{H}(s), \bar{H}\left(s^{\prime}\right)\right]_{M_{q}\left(s_{1} \rightarrow s\right) \leftrightarrow}
$$

$$
\bar{H}(s)=\left\{\begin{array}{cc}
\widetilde{H}\left(s, M_{Q}\left(s_{0} \rightarrow s\right) X\right) & s_{1} \leq s \leq s_{0} \\
\tilde{H}\left(s, M_{d r j f t}\left(s_{0} \rightarrow s\right) X\right) & s_{0} \leq s \leq s_{2}
\end{array}\right.
$$

$$
\tilde{H}(s)=\frac{1}{2} \tilde{K}(s)\left(x^{2}-y^{2}\right)=\left\{\begin{array}{cc}
\frac{1}{2}\left[K(s)-K_{0}\right]\left(x^{2}-y^{2}\right) & s_{1} \leq s \leq s_{0} \\
\frac{1}{2} K(s)\left(x^{2}-y^{2}\right) & s_{0}<s \leq s_{2}
\end{array}\right.
$$

Step 4: Generating functions (cont)

© Represented by fringe field integrals (FFI)

$$
\begin{aligned}
& f_{2}^{-} \cong-\frac{1}{2} I_{0}^{-}\left(x^{2}-y^{2}\right)-I_{1}^{-}\left(x p_{x}-y p_{y}\right)-\frac{1}{2} I_{2}^{-}\left(p_{x}^{2}-p_{y}^{2}\right) \\
&+\frac{1}{2} K_{0} I_{2}^{-}\left(x^{2}+y^{2}\right)+\frac{2}{3} K_{0} I_{3}^{-}\left(x p_{x}-y p_{y}\right)+\frac{1}{2} \Lambda_{2}^{-}\left(x^{2}+y^{2}\right) \\
& f_{2}^{+} \cong-\frac{1}{2} I_{0}^{+}\left(x^{2}-y^{2}\right)-I_{1}^{+}\left(x p_{x}-y p_{y}\right)-\frac{1}{2} I_{2}^{+}\left(p_{x}^{2}-p_{y}^{2}\right)+\frac{1}{2} \Lambda_{2}^{+}\left(x^{2}+y^{2}\right) \\
& f_{2} \cong f_{2}^{-}+f_{2}^{+}+\frac{1}{2}\left[f_{2}^{-}, f_{2}^{+}\right] \quad I_{0}^{-}+I_{0}^{+} \equiv 0 \\
& \approx-\left(I_{1}^{-}+I_{1}^{+}\right)\left(x p_{x}-y p_{y}\right)-\frac{I_{2}^{-}+I_{2}^{+}}{2}\left(p_{x}^{2}-p_{y}^{2}\right) \quad \\
&+\frac{K_{0} I_{2}^{-}}{2}\left(x^{2}+y^{2}\right)+\frac{2 K_{0} I_{3}^{-}}{3}\left(x p_{x}+y p_{y}\right)+\frac{\Lambda_{2}^{-}+\Lambda_{2}^{+}}{2}\left(x^{2}+y^{2}\right) \\
&-\frac{1}{2} I_{0}^{+}\left(I_{1}^{-}+I_{1}^{+}\right)\left(x^{2}+y^{2}\right)-\frac{1}{2} I_{0}^{+}\left(I_{2}^{-}+I_{2}^{+}\right)\left(x p_{x}+y p_{y}\right)
\end{aligned}
$$

Fringe field integrals

© Anti-symmetric assumption not necessary

Fringe field integrals (cont)

© Case of BEPCII SR ring

$I_{1}=I_{1}^{-}+I_{1}^{+}=\frac{1}{24} K_{0} f_{1}^{2}$
Proportional to square of fringe extension

Step 5: Correction matrix of fringe field

© Linear fringe effects
(C) Scale change $f_{2} \cong f_{2}^{-}+f_{2}^{+}+\frac{1}{2}\left[f_{2}^{-}, f_{2}^{+}\right]$
(C) Drift
© Quadrupole

$$
\begin{aligned}
& \approx-\left(I_{1}^{-}+I_{1}^{+}\right)\left(x p_{x}-y p_{y}\right)-\frac{I_{2}^{-}+I_{2}^{+}}{2}\left(p_{x}^{2}-p_{y}^{2}\right) \\
& +\frac{+\frac{K_{0} I_{2}^{-}}{2}\left(x^{2}+y^{2}\right)}{\frac{2 K_{0} I_{3}^{-}}{3}\left(x p_{x}+y p_{y}\right)}+\frac{\Lambda_{2}^{-}+\Lambda_{2}^{+}}{2}\left(x^{2}+y^{2}\right) \\
& -\frac{1}{2} I_{0}^{+}\left(I_{1}^{-}+I_{1}^{+}\right)\left(x^{2}+y^{2}\right)-\frac{1}{2} I_{0}^{+}\left(I_{2}^{-}+I_{2}^{+}\right)\left(x p_{x}+y p_{y}\right)
\end{aligned}
$$

$M R_{x}=\left[\begin{array}{cc}1 & 0 \\ J_{3} & 1\end{array}\right]\left[\begin{array}{cc}1 & J_{2} \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}e^{J_{1}} & 0 \\ 0 & e^{-J_{1}}\end{array}\right] \quad$ SAD linear fringe:

$$
\begin{aligned}
& J_{1}=\left(I_{1}^{-}+I_{1}^{+}\right)-\frac{2 K_{0} I_{3}^{-}}{3}+\frac{1}{2} I_{0}^{+}\left(I_{2}^{-}+I_{2}^{+}\right) \quad M R_{x}(\mathrm{SAD})=\left[\begin{array}{cc}
1 & J_{2} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{I_{1}} & 0 \\
0 & e^{-I_{1}}
\end{array}\right] \\
& J_{2}=I_{2}^{-}+I_{2}^{+} \quad J_{3}=K_{0} I_{2}^{-}+\left(\Lambda_{2}^{-}+\Lambda_{2}^{+}\right)-I_{0}^{+}\left(I_{1}^{-}+I_{1}^{+}\right)
\end{aligned}
$$

First derivation from linear fringe map

© Corrected focal length

$$
f^{-1}=-T_{21} \cong \sqrt{K_{0}} \sin \left(\sqrt{K_{0}} L_{0}\right) e^{-2 J_{1}}-2 J_{3} \cos \left(\sqrt{K_{0}} L_{0}\right)
$$

@ Recalculation of tune shift

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\cos \left(2 \pi Q_{0}\right)+\alpha \sin \left(2 \pi Q_{0}\right) & \beta \sin \left(2 \pi Q_{0}\right) \\
-\frac{1+\alpha^{2}}{\beta} \sin \left(2 \pi Q_{0}\right) & \cos \left(2 \pi Q_{0}\right)-\alpha \sin \left(2 \pi Q_{0}\right)
\end{array}\right]_{\text {out }} M R_{x}} \\
& =\left[\begin{array}{cc}
\cos (2 \pi Q)+\alpha \sin (2 \pi Q) & \beta \sin (2 \pi Q) \\
-\frac{1+\alpha^{2}}{\beta} \sin (2 \pi Q) & \cos (2 \pi Q)-\alpha \sin (2 \pi Q)
\end{array}\right]_{\text {out }} \\
& \Delta Q_{\text {out }}=Q-Q_{0} \cong-\frac{\alpha_{\text {out }}}{2 \pi} J_{1}+\frac{1}{4 \pi} \beta_{\text {out }} J_{3}-\frac{1+\alpha_{\text {out }}^{2}}{4 \pi \beta_{\text {out }}} J_{2} \cong-\frac{\alpha_{\text {out }} K_{0} f_{1}^{2}}{48 \pi} \\
& J_{1} \approx I_{1}=\frac{1}{24} K_{0} f_{1}^{2}
\end{aligned}
$$

Outline

© Introduction
© Estimation of tune shift
© Quad fringe fields
© Magnetic interference
© Linear fringe map
© Equivalent hard edge model
© Numerical test
© Summary

Second derivation from linear fringe map equiv. H. E. model

© Two parameters for symmetric longitudinal field distribution
© Equivalent strength
© Equivalent length

$$
\begin{aligned}
& M\left(-s_{2} \rightarrow s_{2}\right)=\left[\begin{array}{cc}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right]=\left[\begin{array}{cc}
1 & \lambda \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \sqrt{K_{e q}} L_{e q} & \frac{\sin \sqrt{K_{e q}} L_{e q}}{\sqrt{K_{e q}}} \\
-\sqrt{K_{e q}} \sin \sqrt{K_{e q}} L_{e q} & \cos \sqrt{K_{e q}} L_{e q}
\end{array}\right]\left[\begin{array}{cc}
1 & \lambda \\
0 & 1
\end{array}\right] \\
& M\left(-s_{2} \rightarrow s_{2}\right)=\left[\begin{array}{cc}
1 & \lambda \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \Delta L \\
0 & 1
\end{array}\right] M R_{x}\left[\begin{array}{cc}
\cos \sqrt{K_{0}} L_{0} & \frac{\sin \sqrt{K_{0}} L_{0}}{\sqrt{K_{0}}} \\
-\sqrt{K_{0}} \sin \sqrt{K_{0}} L_{0} & \cos \sqrt{K_{0}} L_{0}
\end{array}\right] M L_{x}\left[\begin{array}{cc}
1 & \Delta L \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \lambda \\
0 & 1
\end{array}\right] \\
& T_{11}=T_{22}
\end{aligned}
$$

Equivalent strength and length in the focusing plane

$$
\begin{aligned}
& K_{e q}^{F} \approx K_{0}\left[1-\left(\frac{6 A}{L_{0}^{2}}-\frac{54 A^{2}}{L_{0}^{4}}+\frac{12 B}{L_{0}^{3}}+\ldots\right)+\left(\frac{2 A}{5}+\ldots\right) K_{0}+O\left(K_{0}^{2}\right)\right] \\
& L_{e q}^{F} \approx L_{0}\left[1+\left(\frac{6 A}{L_{0}^{2}}-\frac{18 A^{2}}{L_{0}^{4}}+\frac{12 B}{L_{0}^{3}}+\ldots\right)-\left(\frac{2 A}{5}+\ldots\right) K_{0}+O\left(K_{0}^{2}\right)\right] \\
& K_{e q}^{F} L_{e q}^{F} \approx K_{0} L_{0}\left[1+\left(-\frac{3 A^{2}}{L_{0}^{2}}+\frac{2 B}{L_{0}}-\frac{2 C}{L_{0}}+\ldots\right) K_{0}+O\left(K_{0}^{2}\right)\right] \\
& 2 J_{1}=A \cdot K_{0}+D \cdot K_{0}^{2} \quad J_{2}=B \cdot K_{0} \quad J_{3}=C \cdot K_{0}^{2}
\end{aligned}
$$

A, B, C, and D : parameters on fringe profile

$$
\begin{gathered}
I_{0}^{-}=\int_{s_{1}}^{s_{0}} \widetilde{K}(s) d s \quad I_{1}^{-}=\int_{s_{1}}^{s_{0}} \widetilde{K}(s)\left(s-s_{0}\right) d s \\
I_{2}^{-}=\int_{s_{1}}^{s_{0}} \widetilde{K}(s)\left(s-s_{0}\right)^{2} d s \quad I_{3}^{-}=\int_{s_{1}}^{s_{0}} \widetilde{K}(s)\left(s-s_{0}\right)^{3} d s \\
\Lambda_{2}^{-}=\int_{s_{0}}^{s_{0}} d s \int_{0}^{s_{0}} d s^{\prime} K(s) K\left(s^{\prime}\right)\left(s^{\prime}-s\right) \\
\Lambda_{2}^{+}=\int_{s_{0}}^{s_{0}} d s \int_{s}^{S_{2}} d s^{\prime} K(s) K\left(s^{\prime}\right)\left(s^{\prime}-s\right) \\
J_{1}=\left(I_{1}^{-}+I_{1}^{+}\right)-\frac{2 K_{0} I_{3}^{-}}{3}+\frac{1}{2} I_{0}^{+}\left(I_{2}^{-}+I_{2}^{+}\right) \\
J_{2}=I_{2}^{-}+I_{2}^{+} \quad J_{3}=K_{0} I_{2}^{-}+\left(\Lambda_{2}^{-}+\Lambda_{2}^{+}\right)-I_{0}^{+}\left(I_{1}^{-}+I_{1}^{+}\right) \\
2 J_{1}=A \cdot K_{0}+D \cdot K_{0}^{2} \quad J_{2}=B \cdot K_{0} \quad J_{3}=C \cdot K_{0}^{2}
\end{gathered}
$$

Equivalent strength and length in the defocusing plane

© Easily derived from results of focusing plane using analogy

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\cosh \sqrt{K} L & \frac{\sinh \sqrt{K} L}{\sqrt{K}} \\
\sqrt{K} \sinh \sqrt{K} L & \cosh \sqrt{K} L
\end{array}\right]=\left[\begin{array}{cc}
\cos \sqrt{-K} L & \frac{\sin \sqrt{-K} L}{\sqrt{-K}} \\
-\sqrt{-K} \sin \sqrt{-K} L & \cos \sqrt{-K} L
\end{array}\right]} \\
& K_{e q}^{D} \approx K_{0}\left[1-\left(\frac{6 A}{L_{0}^{2}}-\frac{54 A^{2}}{L_{0}^{4}}+\frac{12 B}{L_{0}^{3}}+\ldots\right)-\left(\frac{2 A}{5}+\ldots\right) K_{0}+O\left(K_{0}^{2}\right)\right] \\
& L_{e q}^{D} \approx L_{0}\left[1+\left(\frac{6 A}{L_{0}^{2}}-\frac{18 A^{2}}{L_{0}^{4}}+\frac{12 B}{L_{0}^{3}}+\ldots\right)+\left(\frac{2 A}{5}+\ldots\right) K_{0}+O\left(K_{0}^{2}\right)\right] \\
& K_{e q}^{D} L_{e q}^{D} \approx K_{0} L_{0}\left[1-\left(-\frac{3 A^{2}}{L_{0}^{2}}+\frac{2 B}{L_{0}}-\frac{2 C}{L_{0}}+\ldots\right) K_{0}+O\left(K_{0}^{2}\right)\right]
\end{aligned}
$$

Properties of equiv. H.E. model

(e) Equiv. length is longer
© Equiv. strength is lower
© Deviation of Equiv. product is small

Ref.[2] Courtesy J.G. Wang

Ref. [3] Courtesy S. Bernal, et al. 2

Outline

© Introduction
© Estimation of tune shift
© Quad fringe fields
© Magnetic interference
© Linear fringe map
© Equivalent hard edge model
© Numerical test
© Summary

Numerical test of the equiv. H.E. model

© Purpose of numerical test
e Accuracy of linear fringe map
© Validity of equiv. H.E. model
© Comparison

slicing
© Numerical calculation using "slicing" method
© Non-truncated equiv. H.E. model
© Truncated equiv. H.E. model

$$
\begin{aligned}
& K_{e q}^{F} \approx K_{0}\left[1-\left(\frac{6 A}{L_{0}^{2}}-\frac{54 A^{2}}{L_{0}^{4}}+\frac{12 B}{L_{0}^{3}}+\ldots\right)+\left(\frac{2 A}{5}+\ldots\right) K_{0}+O\left(K_{0}^{2}\right)\right] \quad K_{e q}^{F} \approx K_{0}\left[1+\left(-\frac{6 A}{L_{0}^{2}}+\frac{54 A^{2}}{L_{0}^{4}}-\frac{12 B}{L_{0}^{3}}\right)+\frac{2 A}{5} K_{0}\right] \\
& L_{e q}^{F} \approx L_{0}\left[1+\left(\frac{6 A}{L_{0}^{2}}-\frac{18 A^{2}}{L_{0}^{4}}+\frac{12 B}{L_{0}^{3}}+\ldots\right)-\left(\frac{2 A}{5}+\ldots\right) K_{0}+O\left(K_{0}^{2}\right)\right] \rightarrow L_{e q}^{F} \approx L_{0}\left[1+\left(\frac{6 A}{L_{0}^{2}}-\frac{18 A^{2}}{L_{0}^{4}}+\frac{12 B}{L_{0}^{3}}\right)-\frac{2 A}{5} K_{0}\right] \\
& K_{e q}^{F} L_{e q}^{F} \approx K_{0} L_{0}\left[1+\left(-\frac{3 A^{2}}{L_{0}^{2}}+\frac{2 B}{L_{0}}-\frac{2 C}{L_{0}}+\ldots\right) K_{0}+O\left(K_{0}^{2}\right)\right]
\end{aligned}
$$

Numerical test of the equiv. H.E. model (cont)

© Cases with variables as
e Effective strength
© Effective length
(e) Fringe extension
© Full fringe
© Focusing functions
© Enge function (Default Enge coefficients used in COSY INFINITY

$$
G_{g a}(s)=G_{0} \exp \left(-\pi s^{2} / d^{2}\right)
$$

© Gaussian function

$$
E(s)=\frac{1}{1+\exp \left[a_{1}+a_{2}\left(\frac{s}{D}\right)+a_{3}\left(\frac{s}{D}\right)^{2}+a_{4}\left(\frac{s}{D}\right)^{3}+a_{5}\left(\frac{s}{D}\right)^{4}+a_{6}\left(\frac{s}{D}\right)^{5}\right]}
$$

a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}
0.296471	4.533219	-2.270982	1.068627	-0.036391	0.022261

Numerical test of the equiv. H.E. model (cont)

e Effective strength as variable

$$
\begin{aligned}
& L_{0}=0.34 \mathrm{~m} \\
& D=0.105 \mathrm{~m}
\end{aligned}
$$

Numerical test of the equiv. H.E. model (cont)

© Effective length as variable
© short magnet=>full fringe

$$
\begin{aligned}
& K_{0}=10 m^{-2} \\
& D=0.105 m
\end{aligned}
$$

Numerical test of the equiv. H.E. model (cont)

© Fringe extension as variable
© short fringe: excellent
@ long fringe: not so good

Numerical test of the equiv. H.E. model (cont)

© Case of full fringe
© fringe map estimation is no quite good for "long" full fringe magnet

$$
\Delta T_{21} / T_{21}
$$

$\Delta T_{11} / T_{11}$

$$
K_{0}=2 m^{-2}
$$

Proposal of a simple H.E. model

e First order correction
© Applicable for both focusing and defocusing planes
© Easy implemented in codes not include fringe fields, such as MAD and AT
© More effective for cases of small quad field integral and short fringe extension

$$
\begin{aligned}
& K_{e q}=K_{0}\left(1-\frac{f_{1}^{2}}{2 L_{0}^{2}}\right) \quad L_{e q}=L_{0}\left(1+\frac{f_{1}^{2}}{2 L_{0}^{2}}\right) \\
& f_{1}=\sqrt{24\left|\int_{0}^{\infty} \frac{\widetilde{G}(s)}{G_{0}}\left(s-s_{0}\right) d s\right|}
\end{aligned}
$$

Proposal of a simple H．E．model（cont）

© Test of the simple model using SAD
© BSR＿07jan01，nominal：$(7.28,5.18)$
© R3OQ02：
$L_{0}=0.548 m \quad K_{0}=0.405 \quad f_{1}=0.133 m \quad L_{e q}=0.564 m$
Turn on fringe：$(7.27994,5.17979)$
Simple model：$(7.27994,5.17979)$
© R2OQ06：

$$
L_{0}=0.34 m \quad K_{0}=1.46 \quad f_{1}=0.154 m \quad L_{e q}=0.375 \mathrm{~m}
$$

Turn on fringe：$(7.27858,5.17944)$
Simple model：$(7.27856,5.17945)$

Outline

© Introduction
© Estimation of tune shift
© Quad fringe fields
© Magnetic interference
© Linear fringe map
© Equivalent hard edge model
© Numerical test
© Summary

Summary

© Tune shift in BEPCII rings was well explained by effects of fringe fields and magnet interference．
© A simple method was found to calculate the tune shift due to quad fringe fields．
（e）Perturbation treatment based on Lie technique is a good approach for quad fringe field effects．It is easy to be extended to calculate nonlinear fringe maps，even magnetic interference included．
© The work will also help to estimate the significancy of fringe fields and magnetic interference in small rings such as CSNS， Proton Therapy Accelerator，etc．
© The simple H．E．model may be applied in MAD and LOCO for linear optics design and compensation．

Acknowledgements

© Thanks to Prof. J.Y. Tang, Dr. Y. Chen, Dr. Y.Y. Wei
 © Thanks to the BEPCII commissioning team

References:

[1] J. Irwin and C.X. Wang, Explicit soft fringe maps of a quadrupole, PAC95.
[2] J.G. Wang, Particle optics of quadrupole doublet magnets in Spallation Neutron Source accumulator ring, Phys. Rev. ST Accel. Beams 9, 122401 (2006).
[3] S. Bernal, et al., RMS envelope matching of electron beams from "zero" current to extreme space charge in a fixed lattice of short magnets, Phys. Rev. ST Accel. Beams 9, 064202 (2006).

Thank you for your attention!!

 Institute of Figfi Eneryy Pfrysics

backup

Optics correction

＠Comparison of SAD and LOCO correction

SAD：with fringe fields of quads and bends，without magnetic interference LOCO：based on beam measurement，include all imperfections

The figure shows similar correction scheme in SAD and LOCO

