

Untersuchung von Elektronenpaketen am FLASH-Beschleuniger mit einer transversal ablenkenden HF-Struktur

Disputation, 06.05.08

Michael Röhrs

Einleitung

Übersicht

- Motivation
- Die transversal ablenkende HF-Struktur (TDS)
- Messmethoden
- Resultate unter FEL-Betriebsbedingungen
- Zusammenfassung

Der Freie-Elekronen Laser in Hamburg (FLASH)

Longitudinale Kompression

1.Erzeugung eines Energiegradienten : 2. Energieabhängige Pfadlänge :

Longitudinale Kompression

Die TDS erlaubt die Untersuchung der Peakstrom-Region

Der FEL-Prozess

Undulator-Magnet:

spontane Undulatorstrahlung

$$\lambda_L = \frac{\lambda_U}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

- Energieaustausch zwischen Elektronenstrahl und Strahlung
- Dichtemodulation mit Periode λ_L

stimulierte Emission

 exponentieller Anstieg der Strahlungsleistung

$$P \propto \exp\left(rac{z}{L_g}
ight)$$

mit Gain-Länge L_g

Anforderungen an den Elektronenstrahl

- hohe Teilchendichte n_e : $L_g \propto n_e^{-1/3}$
 - hoher Peakstrom (~kA)
 - kleine transversale Strahlbreite $\sigma_x = \sqrt{\langle x^2 \rangle}$
- kleine Strahldivergenz $\sigma_{x'}=\sqrt{\langle x'^2\rangle}, \ x'=rac{dx}{dz}$ FEL-Kriterium: $\sigma_x\cdot\sigma_{x'}\leqrac{\lambda_L}{4\pi}$

$$\rightarrow$$
 normierte Emittanz: $\gamma \epsilon_x = \gamma \cdot \sqrt{\langle x^2 \rangle \langle x'^2 \rangle} - 2\langle xx' \rangle \sim 1 - 4 \ \mu \text{m}$

• hohe Energieschärfe: $\frac{\sigma_E}{E} < 0.5 \cdot
ho_{FEL}, \;\;
ho_{FEL} = \frac{1}{4\pi\sqrt{3}} \cdot \frac{\lambda_U}{L_g} \sim 10^{-3}$

TDS-Messungen erlauben die Bestimmung dieser Parameter

Übersicht

- Motivation
- Die transversal ablenkende HF-Struktur (TDS)
- Messmethoden
- Resultate unter FEL-Betriebsbedingungen
- Zusammenfassung

Die HF-Struktur

- 2003 installiert, Kollaboration DESY-SLAC
- 1968 gefertigt
- normalleitend (Kupfer)
- Frequenz: 2.86 GHz
- Länge: 3.6 m

Die HF-Struktur

- Zellenlänge: 3.5 cm
- HF-Wanderwellenstruktur
- relativistisches Elektron erfährt konstante Kraft

$$F_y = F_0 \cdot \sin(\phi_{HF})$$

Die HF-Struktur im Beschleuniger

Longitudinale Auflösung und Kalibration

Messung von Δy als Funktion der HF-Phase $\Rightarrow S$

typisch:

$$S=15$$
 $\sigma_y=150~\mu\mathrm{m}$
 $\Rightarrow \sigma_\zeta=10~\mu\mathrm{m}$
(30 fs)

Übersicht

- Motivation
- Die transversal ablenkende HF-Struktur (TDS)
- Messmethoden —
- Resultate unter FEL-Betriebsbedingungen
- Zusammenfassung

- Stromprofil
- Energieverteilung
- Scheibenemittanz
- horizontaler Phasenraum

FLASH

Messung des Stromprofils

Messung des Stromprofils:

- Kalibration longitudinaler Abstände
- Kalibration der Ladungsdichte

Messmethoden

Gemessenes Stromprofil unkomprimierter Elektronenpakete

Messmethoden

Messung der Energieverteilung

- energieabhängige Position auf dem Schirm: $\Delta x = D \cdot \frac{\Delta E}{E}$ typisch: $D \sim$ 30 cm, $\sigma_x =$ 100 μ m $\Rightarrow \frac{\sigma_E}{E} \approx \frac{\sigma_x}{D} \sim$ 3 \cdot 10⁻⁴

Gemessene Energieverteilung unkomprimierter Elektronenpakete

650 MeV, 1nC, Kompressor-Schikanen ausgeschaltet

Messmethoden

Messung der horizontalen Emittanz

- Emittanz: $\epsilon_x = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle 2\langle xx' \rangle} = \det(\sigma_x)$ $\sigma_x = \begin{pmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle \end{pmatrix}$
- Strahltransfer: $\sigma_x(s)=M\cdot\sigma_x(s_0)\cdot M^T\,,\ M:s_0 o s$ $\det(M)=1\Rightarrow \epsilon_x=const$
- Messung von $\sigma_x^{1,1}(s)=\langle x^2\rangle(s)$ für verschiedene M $\Rightarrow \sigma_x(s_0)\Rightarrow \epsilon_x$
- typischerweise mehr als 3 Messungen → überbestimmtes Gleichungssystem → Methode der kleinsten Quadrate
- normierte Emittanz: $\gamma \epsilon_x$

Messung der Scheibenemittanz

Bildbearbeitung wichtig!

- Fehlerquellen:
 - statistische Fehler
 - Kalibrationsfehler
 - Auflösung des optischen Systems
 - Fehler der Transfermatrizen (Energiefehler)
- Fehler der Emittanz hängt ab von
 - Beschleuniger-Optik (optimiert)
 - Strahleigenschaften
- hier:

$$\sigma_{\epsilon_x}/\epsilon_x < 20\%$$

Messmethoden

Messung der Scheibenemittanz: Quadrupolmagneten und Schirm

Messmethoden

Gemessene Scheibenemittanz unkomprimierter Elektronenpakete

- Mittelwert der Scheibenemittanz: 2.1µm
- projizierte Emittanz: 3.8 μm
- Differenz durch
 - Zentroidenversätze $\langle x \rangle (\zeta)$
 - Deformation der Phasenraumverteilung

FLASH

Phasenraum-Tomographie

 \mathcal{X}

Methode der maximalen Entropie (MENT)

Entropie E(f):

$$E(f) = \int -f(x, x') \ln f(x, x') dx dx'$$

(Implementation: J. Scheins, 2004)

TDS erlaubt 3D-Tomographie: Rekonstruktion des horizontalen Phasenraums in longitudinalen Scheiben $\Delta \zeta$

Messmethoden Rekonstruierte Dichteverteilungen im horizontalen Phasenraum

490 MeV, 0.6 nC, keine Kompression

Genauigkeit der Rekonstruktion

Tomographie

kleinste Quadrate

Übersicht

- Motivation
- Die transversal ablenkende HF-Struktur (TDS)
- Messmethoden
- Resultate unter FEL-Betriebsbedingungen
- Zusammenfassung

Messbedingungen

- Messungen bei
 - 494 MeV (27 nm)
 - 677 MeV (13.7 nm)
 - 964 MeV (6.8 nm)
- mittlere Strahlungsenergie pro Puls:
 - 0.5 μJ (964 MeV)
 - 5 µJ (677 MeV)
 - $-10 \mu J (494 MeV)$
 - → nicht gesättigt!
- Beschleuniger-Optik und Strahlführung hinter den Kompressor-Schikanen geändert → keine FEL- Strahlung, aber: Energieverteilung, Emittanz und Stromprofil unverändert!

Gemessene Energieverteilung unter FEL-Betriebsbedingungen

Gemessenes Stromprofil unter FEL-Betriebsbedingungen

Horizontale Strukturen

horizontaler Versatz der Peakstrom-Region durch kohärente Emission von Synchrotron-Strahlung in Kompressor-Schikanen

Horizontaler Phasenraum

Zentroidenkurve:

gemittelte Phasenraumverteilung, gesamtes Elektronenpaket:

494 MeV, 0.7 nC

Gemessene Scheibenemittanz

longitudinale Auflösung ~ 8 μm (RMS)

- Ursache?
- FEL-Kriterium?

Vergleich mit numerischen Simulationen

Simulationen mit ASTRA (K. Flöttmann) und CSRTrack (M. Dohlus)

Emittanz-Analyse

gemessene Verteilung innerhalb der Peakstrom-Region:

1 8 μm, 1.2 kA 1.2 kA x [mrad] -0.1 -1 0 1 2 Gauss-Fit an den Bereich hoher Dichte:

typisch: 2-4 µm normierte Emittanz, 0.5 – 1.0 kA Peakstrom

Zusammenfassung

- TDS erfolgreich eingesetzt zur Messung von Stromprofil, Energieverteilung, Scheibenemittanz und horizontaler Phasenraumverteilung mit einer longitudinalen Auflösung von ~10 µm
- tomographische Rekonstruktion der Phasenraumverteilung notwendig zur Bestimmung der transversalen Emittanz des "lasenden" Bereichs, Scheibenemittanz nicht aussagekräftig
- kohärente Synchrotronstrahlung von entscheidender Bedeutung für die Verteilung in horizontalem und longitudinalem Phasenraum unter FEL-Betriebsbedingungen

Ich danke...

Peter Schmüser, Gerhard Mack, Holger Schlarb, Bernhard Schmidt, Christopher Gerth, Florian Löhl, Bart Faatz, Ernst-Axel Knabbe, Gerhard Grygiel, Hossein Delsim-Hashemi, Ingrid Nikodem, Jörg Rossbach, Markus Hüning, Siegfried Schreiber, Thomas Bruns, Uschi Djuanda, Vitaly Kocharyan, Bolko Beutner, Martin Dohlus, Thorsten Limberg, Axel Winter, Klaus Flöttmann, Winfried Decking, Lars Fröhlich, Eduard Prat, Evgeny Schneidmiller, Benjamin Polzin, Katja Honkavaara, Igor Zagorodnov, Kirsten Hacker, Michail Yurkov, dem gesamten FLASH-Team,

und allen Anwesenden für die Aufmerksamkeit!