Quasi-Crystalline Beam (QCB) Formation in Strongly Accelerating Intense Electron Distributions

Prof. J. Rosenzweig UCLA Dept. of Physics and Astronomy DESY Seminar— November 12, 2008

The Problem

- Observed coherent *optical* transition radiation (COTR) from LCLS photoinjector beam
- Some structure in beam at microscopic (<µm) level. How?

Observations

- No COTR upstream of bends
- Up to 4x enhancement after 1st bends
- Over 10x with additional (linac off-crest) bunching > BC1

D. Dowell, et al. PRST-AB 11, 030703 (2008)

Indications of coherence

- Integrated intensity dependence stronger than N
- Diffraction ring formation
- Spectral spikes
- Stochastic intensity, total power

FIG. 43. (Color) An image of the COTR radiation after BC1 observed with extreme bunch compression.

Spectrum: transmission grating

Evidence for spectral peaks (H. Loos, SLAC)

DESY FLASH Measurements

- Approximate scaling law:
 f_{COTR}~f_{RF}
- Born out by analogous data?
- High resolution results reported (FEL 2008, Schmidt, et al.)
 - Multi-spike spectra
 - Much more complete picture

Figure 7: Single shot (dots) and averaged (line) CTR spectrum between 0.95 μ m and 1.7 μ m measured with a commercial InGaAs spectrograph. The response of the detector is basically flat between 1.0 μ m and 1.7 μ m.

What does COTR tell us?

- Bunching factor on harmonic: *b_n*
- ~Total energy on *n*th harmonic
- Coherence angle smaller than natural TR angle for energies <500 MeV
- Very small transverse beam structures (<10 microns) do not radiate coherently
 - Coherence angle large
 - "Speckle" is outside of γ^1 cone
- Very wide beam structures also do not radiate coherently
- Transverse distribution Fourier xfm...?

Estimate bunching factor observed

- Assume narrow band spectrum
- Compare to incoherent TR photon number
- Use LCLS parameters, experimental results
- Solve for estimated bunching

• This is a big number; probably an underestimate (assumes perfect *beam transverse coherence*)

Hypotheses: old and new

- "Microstructures" in beam (spikes). Due to:
 - Longitudinal space-charge
 - Coherent synchrotron radiation (CSR)
 - Phase space folding in compression, end-spikes
- Quasi-crystalline beam formation. Due to:
 - Microscopic longitudinal space-charge
 - Can't happen in coasting beams; need acceleration
 - Longitudinal motion "freezes"; F_z integrated
 - Final spatial rearrangement in chicane
 - Truly *microscopic*, at mean inter-particle spacing level

Crystalline beams

- Emittance dominated beam: gas
- Space-charge dominated beam: liquid
- Coulomb (Wigner) crystal: solid
- Density
- Compare ratio of
 - Potential energy
 - Kinetic energy
- Crystal formed when
- Evaluate in rest frame

Do we have Coulomb crystalline conditions in photoinjector?

- Transverse focusing gives higher temperatures Γ small and time dependent conditions
 - No transverse crystallization possible
- Longitudinal 1D crystal OK
 - Observed in storage rings (e.g. Aarhus)
 - Schottky spectral signature: noise suppression, spectral spikes near crystal $\boldsymbol{\lambda}$
 - Still have Γ too small at linac entrance
 - $k_B T_z = 1 \text{ eV}$
 - $\lambda = 2.5$ micron, rest (1.1 micron lab)
 - Overtaking of particles in ζ possible
 - Secret ingredient: acceleration

How is 1D crystal different than microbunching?

Microbunching schematic

1D crystalline distribution

- Mircrobunching: periodic compression-dilation of electron longitudinal positions
- 1D crystal: complete regularity in spacing of the longitudinal distribution

Experimental signature: statistics of random longitudinal distribution

- Random (Poisson) distribution in inter-electron distances
- Schottky noise in beam spectrum (*f*_λ mean inter-electron freq.); reflected well in OTR spectrum

Statistics of 1D crystalline distribution

- Ordered distribution in inter-electron distances
- Spectral peaks above noise (f_{λ} and harmonics)

Formation of the quasicrystal

- Strongly damped longitudinal motion during acceleration
 - No longitudinal nonlaminarity
- Longitudinal space-charge adds ~ coherently
 - Energy modulation
- Chicane rearranges the electrons longitudinally
 - Longitudinal distribution uniform at *microscopic* level
 - Observed coherence in OTR from longitudinal crystal

QCB formation: Effects of acceleration

- Stretching (length contraction)
- In lab frame, 1st electrons begin acceleration earlier
- With E=20 MV/m, an e- lagging by λ sees the preceding electron gain 23 eV. Overtaking (*longitudinal nonlaminarity*) strongly suppressed
- Scenario: ~frozen positions in ζ=z-ct. the longitudinal space charge keeps adding to energy modulation, but without changing ζ

Note on slice energy spread

- Total slice energy spread in simulation ~1 keV, not 1 eV
- Consistent with observation
 - Resolution limited
- Energy errors are mainly due to non-synchronous spatial harmonics in gun, correlated strictly to radius
 - Non-relativistic region
- Local (in r) energy spread still very small (~eV)
- Correlation in *r*-*z* gives distorted (bent) crystal
 - Larger coherent angle (smaller effective source width)

Lab frame analysis: Coasting beam

- Use beam-centered coordinate
- Density
 - Laminar integral
- Equation of motion

- Plasma frequency scales as
 - Density difference
 - Time dilation

Include acceleration

 Constant acceleration Equations of motion Damping and longitudinal focusing included Focusing often cancels macroscopic space-charge defocusing • Running on *invariant envelope*, new scaling of external forces • Solution approach With cold initial state...

"Frozen position" after damping

• Full solution for SPARC scenario validates analysis

Analytical prediction

Tolerance on initial energy spread

• Arbitrary initial conditions

• Crystal breaking ("wavebreaking") at $\Delta \zeta$ =0, in limit of very large γ

• In physical terms, the minimum initial thermal velocity for nonlaminarity is, taking e.g. $\Delta \zeta_0 = 0.5 \ \mu m$, $\gamma_0 = 11$, $\gamma' = 26 \ m^{-1}$

Strong damping of longitudinal motion: an approximate view

- Derivative of longitudinal motion:
- With "frozen" approximation
- Upper limit from expt.
- Asymptotic solution

• Approximation consistent

Is this energy spread consistent?

- Three dimensional effects important in forces, dynamics
- Uniformity aided by transverse mixing (emittance)
- Forces more uniform due to length dilation in rest frame
- Estimate peak field. Distance between charges ~γλ, but total "coherent charge" ~(γλ)²

Microscopic dynamics modeling

- Step 1: coherent slice model, use disk-like beams
- Include all acceleration and focusing
- Investigate:
 - Dynamics in linac
 - Effects of R₅₆
 - Tolerance to initial energy spread
 - Expected spectra
 - Advanced topics: velocity bunching

Initial energy spread

0.01% initial energy spread (500 eV)

1% initial energy spread

Several keV initial energy spread tolerated

Latest results: LCLS analysis

- Dynamics influenced by external focusing
- Notable quasicrystal after first bend, not before...

Spectral view of LCLS case

Notable peak near 1 micron develops after bends

New topic: velocity bunching

- Experiment at SPARC
 - Optimized for velocity bunching
 - Do we need bends?

Molecular dynamics model

- Need microscopic calculations
 - "Molecular dynamics"; in progress
 - Periodic system, <1000 particles
 - Box with evolving dimensions
 - Compression in *x*, *y*
 - Stretching in ζ
 - Use Fourier fields...
 - Careful with spectral resolution
 - What sets exact crystalline lengths?
 - Rest frame density *constant*
 - But *stretched aspect ratio*

Future topics

• More experimental input needed

- Longitudinal spectrum: Fourier xfm of ζ distribution
- Transverse far-field distibution: Fourier xfm of *x*, *y* distributions; information on transverse size of structures
- Grain size information
- Experimental tests at BNL
 - Photoinjector similar; energy lower (70 MeV), UCLA chicane
 - Spectrometer, other coherence measurements key
 - Measure far-field angular distribution for added information
- Future experiments
 - FLASH: excellent diagnostic capabilities. To discuss!
 - SPARC: Velocity bunching