Theoretical and Preliminary Experimental Research on A Mini Bremsstrahlung X-ray Source (MBXS)

Gu Xiaofeng

BFEL Lab, IHEP

Outline:

- 1. Introduction to the MBXS
- 2、Physical design
- 3、Preliminary Experiments
- 4、The Upgrade of the BFEL Facility

A 、Introduction to the MBXS

The Parameters of the Storage Ring and Injector

	Electron Energy	6MeV
	Orbit Radius	15.54cm
	Average Current	~0.11A
	Size (H×W)	~0.3m×0.8m
Storage Ring	Beam lifetimes	~10us
	SR Energy Loss	$7.6 \times 10^{-7} keV$
	Circulating Periods	3.27ns
	Circulating Frequency	306.25MHz
	Center Field	$B_o = 0.134 \text{ T}$
	Accelerator type	Linac
	Injector Size	~1 meter
	Electron Energy	6MeV
	RF Frequency	2.45GHz
Injector	Repetition Periods	2.5ms (400Hz)
	Pulse Width	3us
	Average Current	100mA
	Inject efficiency	30%
	Beam Size	2mm

The Parameters of the X-ray source

Material	tungsten
Mechanism	Bremsstrahlung
Angle	85mrad
X-ray Spot Size	~10um (wire)
Spectrum	lkeV~6MeV (White)
Brilliance	1×10^8 Photons /s/mrad ² /mm ² /0.1%BW
Energy loss (By SR)	$7.6 \times 10^{-7} keV$
Energy loss (By Brem.)	34keV (10um)
Target particle density	$6.32 \times 10^{28} / m^3$
Cross Section (Br.)	$1.22 \times 10^{-27} \text{m}^2$
Beam Loss Rate by Br.	$1.73 \times 10^{4/s}$
Beam Loss Rate by scat.	$8.51 \times 10^{4/s}$
Photon Num./(electron) (14~30keV)	~ 0.0027
Photon number/ (electron mrad ²)	1.31×10 ⁻⁶
Photon number/ (smm ² mrad ²)	$\sim 2.2 \times 10^{10}$

Brilliance of the MBXS

The Collided volume

Probability

$$V_t = \chi_t \alpha_t$$

The Number of Atom
$$N_t = n_t \cdot V_t = n_t \cdot \chi_t \alpha_t$$

L.I.Schiff cross-section
$$d\sigma_k = \frac{2Z^2 r_0^2}{137} \frac{dk}{k} \left\{ \left[1 + \left(\frac{E}{E_0}\right)^2 - \frac{2}{3} \frac{E}{E_0} \right] \left(\ln M(0) + 1 - \frac{2}{b} \tan^{-1} b \right) + \frac{E}{E_0} \left[\frac{2}{b^2} \ln(1 + b^2) + \frac{4(2 - b^2)}{3b^3} \tan^{-1} b - \frac{8}{3b^2} + \frac{2}{9} \right] \right\}$$
Total cross-section $\sigma_{total} = d\sigma_k \cdot N_t = d\sigma_k \cdot n_t \chi_t \alpha_t$ Quantum Electrody
Coulomb correctionProbability $P = \frac{\sigma_{total}}{\alpha_t} = d\sigma_k n_t \chi_t$ Quantum Electrody
Screened
Thin target approx

vnamics Coulomb correction Screened

Thin target approximation

Electron number

$$N_e = \frac{I\Delta t}{e} \cdot \frac{\alpha_t}{S_b}$$

Total photon number

$$N_{br} = P \cdot N_e = P \cdot \frac{I\Delta t}{e} \cdot \frac{\alpha_t}{S_b}$$

The brilliance

$$B = \frac{2Z^2 \cdot r_o^2}{137} \frac{n_t \cdot \chi_t \cdot I}{e \cdot S_b \cdot \Omega} \cdot \frac{dk}{k} \{ [1 + (\frac{E}{E_o})^2 - \frac{2E}{3E_o}] [\ln M(0) + 1 - \frac{2}{b} \tan^{-1} b] + \frac{E}{E_o} [\frac{2}{b^2} \ln(1 + b^2) + \frac{4(2 - b^2)}{3b^2} \tan^{-1} b - \frac{8}{3b^2} + \frac{2}{9}] \}$$

Target Parameters				
Cross-section	α_{i}	Density	ρ	
Thickness	X _t	Avogardo constant	N _a	
Atom density	$n_t = \frac{N_a \bullet \rho}{A}$	Atomic weight	А	

10¹² photons/s/mrad²/mm²/0.1%BW ?

The formula becomes less reliable as:

- •The photon energy approaches the high frequency;
- •The atomic number of the target increases;
- •The initial electron energy decreases.

Beam Current

$$\overline{I} = R_i \cdot \varepsilon_i \Delta_t I_0 f_{RF} \cdot \tau \cdot (1 - e^{-t/\tau})$$

10⁸ photons/s/mrad²/mm²/0.1%BW

$$\frac{dI}{dt} = R_i \varepsilon_i I_0 \Delta_t f_{RF} - \mu I - \eta I^2$$

$$\frac{dI}{dt} = 0, \eta = 0$$

$$I = R_i \varepsilon_i I_0 \Delta_t f_{RF} / \mu$$

10¹² photons/s/mrad²/mm²/0.1%BW

Examples

Beamnrc (EGS4)

Preference	6MeV	27.39MeV、27.77MeV
Boundary Crossing Algorithm	EXACT	PRESTA-I
Electron-Step	PRESTA-II	PRESTA-I
Spin Effects	ON	ON
Brems Angular Sampling	KM	Simple
Brems Cross Section	NIST	NIST
Bound Compton Scatting	ON	ON
Pair angular Sampling	КM	KM
Photo Electron Angular Sampling	ON	ON
Rayleigh Scatting	OFF	OFF
Atomic Relaxations	ON	OFF

$$Y_{plot} = \frac{N_{pbin}}{N_{INC} \cdot S \cdot \frac{E_{max} - E_{Min}}{N_{bin}}}$$

Examples (By EGS4)

Summary:

- Physical process: Bremsstrahlung
- Electrons:

Can be re-used;

Brilliance :

10⁸ photons/s/mrad²/mm²/0.1%BW.

Advantage:

Simple (injector and storage ring) Small (1.8m × 0.8m) Low price (About 200,000 Euro)

Used:

Small Labs, hospitals or factories.

B、Physical design

1、The Storage Ring

2、Perturbator

3、Resonant Cavity

The Storage Ring

a piece of cylinder weak focus magnet

magnetic field distribution

Storage ring physics

The Mini Storage Ring Parameters

Field Index	<i>n</i> = 0.72	Orbit Radius	<i>r</i> =15.54cm
Energy	E = 6 MeV	Center Field	$B_o = 0.134 \text{ T}$
Periods	$T_o = 3.27 \text{ ns}$	Circulating Frequency	$f_o = 306.25 \text{ MHz}$
Baam size	$\sigma_x = 168.85 \times 10^{-7} m$	Nature Channetisite	$\xi_x = -0.26$
Beam size	$\sigma_z = 1.87 \times 10^{-7} m$	Nature Chromaticity	$\xi_z = -0.42$
Twiss	$\beta_x = 0.29m$		$\tau_x = 891.12s$
	$\beta_z = 0.18m$	Damping Time	$\tau_z = 2291.44s$
	$\alpha_x = 0$		$\tau_{\epsilon} = 5346.7s$
	$\alpha_z = 0$	Dispersion Function	$\eta_r = 0.56m$
	$\gamma_x = 3.40 m^{-1}$	SR Energy Loss	$U_o = 7.38 \times 10^{-7} keV$
	$\gamma_z = 5.46m^{-1}$	Tune	$v_x = 0.529$
Beam Time	<i>t</i> = 9.77 <i>us</i>	1000	$v_z = 0.8485$

Designed by formulas

Designed by formulas

Inner Radius r _a 3cm		Height of Coil Area h	бст
Pole-face Outer Radius $r_{_{\rm N}}$	23cm	Width of Coil Area b	12m
Orbit Radius r ₀	15.54cm	Pole-face Distance δ_0	7.48cm
r _a	35cm	Ampere Turn	4300AT
Outer Radius r_e	41cm	Current Density	0.4A/mm ²
Pole-face Inner Radius r_c	9cm	Height	34cm
Orbit Magnet Field B_0	0.134T		

A matlab program

Flow Chart

Magnetic Field Distribution

Magnetic Field Distribution

Magnetic field Index

Potential-well in Radial and Axial direction

Perturbator

1. It's just several windings!

2. It only works during beam injection.

Perturbator Magnetic Field Distribution

A Fortran electron trace program

A Fortran electron trace program

Results

Electron Trace

Resonant Cavity(1/4wavelengh)

RF Parameters			
Parameters	Value		
Average Current	~ <u>0.11A</u>		
Energy loss/ Turn	~34keV		
Beam Power Loss	3.74kW		
Harmonics Number	8		
RF frequency	2.45GHz		
Circulating Frequency	306.25MHz		
RF-voltage	120keV		

Inner Length	67mm
Outer Length	44mm
Distance	4mm
Wall Thickness	2mm
Slit Width	5mm
Cavity Frequency	2450.3 MHz
Q Value	~2500

Layout of the BFEL Facility

Parameters of the BFEL

Energy	15-30MeV	
Energy Spread	0.5%	
Emittance	50-80 mm mrad	
Macro Pulse Width	4us	
Micro Pulse Width	4ps	
Macro Pulse Average Current	200mA	
Micro Pulse Average Current	15-20A	
Repetition Rate	3.125Hz	
Average Current	1.875×10 ⁻⁶ A	
RF Frequency	2856MHz	

New Profile & Targets

Target Num.	Size	Shape	Material
1 (Radius)	85um	Wire	Tungsten
2 (Radius)	210um	Wire	Tungsten
3 (Thickness)	120um	Foil	Tungsten

New Profile

Online Assemble

Vacuum Testing

Some Results

Beam current

Energy

Some Results

120um Tungsten Foil		Without Target	With Target	Changed
	Energy MeV	27.77	27.67	0.4%
Experiment	Energy Spread	4.04%	4.23%	1.9%
	Electron Loss	_		25%
Simulation(EGS4)	Energy MeV	27.77	27.57	0.7%
	Energy Spread	0	0.2%	_
Analytical	Energy MeV	27.77	26.835	3.4%
calculations	Energy Spread	_	—	_
	BCTI	BCT2	BCT3	_
Beam Current	662mA	143mA	140mA	

Imaging Results

Two Little Pins

X-ray Port

Control panel

D、The Upgrade of BFEL Facility

1. Beam Diagnoses

2、BFEL Commissioning

3. The First Spontaneous Radiation

Beam size measurement

Schematic diagram of the beam size measurement

Emittance measurement

 $d\varepsilon = \pi \cdot (dr_1 \cdot \frac{r_2 \cdot \gamma}{L} + dr_2 \cdot \frac{r_1 \cdot \gamma}{L} + d\gamma \cdot \frac{r_1 \cdot r_2}{L} - dL \cdot \frac{r_1 \cdot r_2 \cdot \gamma}{L^2})$

Emittance measurement

	Profile2 (mm)	Profile3 (mm)
RMS ₁	1.15	1.02
RMS_2	1.13	1.03
RMS ₃	1.13	1.03
RMS_4	1.13	1.00
RMS,		1.01
RMS_6		1.08
RMS,		1.05
RMS	1.14	1.03
σ	0.01	0.03
σ'	0.03	0.02
RMS	$1.14 {\pm} 0.04$	1.03 ± 0.05
FWHM	2.68±0.09	2.43 ± 0.12
r	$1.34 {\pm} 0.05$	1.22 ± 0.06

The BFEL Commissioning

The First Spontaneous Radiation

Gu Xiaofeng

April 2, 2008

References:

- H.Ymada. Novel X-ray source based on a tabletop synchrotron and its unique features. Nuclear Instruments and Methods in Physics Research B 199, (2003): 509-516
- 2. Roderick J. Loewen. A Compact Light Source: Design and Technical Feasibility Study of a Laser-Electron Storage Ring X-Ray Source, SLAC-R-632
- 3、V. V. Kaplina, S. R. Uglov, O. F. Bulaev, et al. Observation of multiple passes of electrons through thin internal targets of a betatron. Nuclear Instruments and Methods in Physics Research, 2001 (B 173): 3-15