GeV electron beams from cm-scale accelerators

Wim Leemans LOASIS Program

Hamburg, Germany

n collaboration with LOASIS program members

http://loasis.lbl.gov/

Current scientists and Techs of LOASIS team

Theory: E. Esarey, W. Isaacs, C. Schroeder Postdocs: E. Michel*, D. Panasenko, A. Gonsalves, N. Matlis. Grads: K. Nakamura (U. Tokyo), G. Plateau (Ecole Polytech, France), S. Gaillard(UNR) Techs: D. Syversrud, N. Ybarrolaza Visitors: V. Leurent (Strasbourg), H. Lambrik (PUE), B. Fleshens (TUE), W. van Hemmen, (TUE), S. Hess (CSD, O. Albert (LOA), K. Ta Phuoc (starting 3/07)

K. Robinson-Engineering/LBNL C. Haber, M. Battaglia --LBNL

SPORT PROPERTY.

7. Fawley ---

Staff:

D. Bruhwiler, D. Dimitrov, J. Cary--TechX Corp T. Cowan, A. Kemp-- University of Nevada, Reno^{*} S. Hocker--Oxford University, UK R. Ryne, J. Qiang--AMAC/LBNL W. Mori--UCLA

Exp't: C. Geddes, W. Leemans, C. Toth

D. Jaroszynski-University of Strathelyde, UK
M. Van der Wiel-TUE, Eindhoven, NL
G. Dugan--Cornell University
D. Schneider, B. Stuart, C. Barty, C. Siders--LLNL
T. Stoehlker-GSI

1985: Chirped Pulse Amplification Technology

D. Strickland and G. Mourou, Optics Comm. 56 (1985)

Focused Intensity vs. Year

Non-linear QED

Compact accelerators
Ultra-high harmonics
FEL's

.....

BERKELEY LAB

"Ultra-source"

The laser-wakefield accelerator

(b)

20

Boat on the ocean displaces water Wake velocity = boat velocity Laser in plasma displaces electrons Wake velocity = Group velocity of light

10

 $\omega_p \xi$

-0.4 -0.2 0 0.2 0.4 0.6

Shadwick eBaladEFEPRS

aser

Surfers are 'trapped' by waves

T. Tajima and J.M. Dawson, PRL 1979

(b) (b) (b) (b) (b) (b) (c) (c)

Plasma-electrons are trapped by wakefield 10's - 100's GV/m, scales as \sqrt{n}

Building a laser wakefield accelerator

Depletion:

For small intensity $(a_0 < 1) >> L_{dph}$ For relativistic intensities $(a_0 > \sim 1)$, $L_{dph} \sim L_{depl}$

Esarey et al., IEEE 1996; Leemans et al., ibid.

2002: Laser "bubble (or blow-out)" regime

A.Pukhov & J.Meyer-ter-Vehn, Appl. Phys. B, 74, p.355 (2002)

Laser pulse evolution leads to blow-out or bubble regime

But simulations use a_{in}=10: experimentally not doable...or is it?

Tool: LOASIS multi-terawatt laser

LOASIS laser system

<u>Three main amplifiers (Ti:sapphire,10 Hz):</u>

- Godzilla:

0.5-0.6 J in 40-50 fs (10-15 TW) ===> main drive beam (to date)

- Chihuahua:

20-50 mJ in 50 fs 250-300 mJ in 200-300 ps 20-80 mJ in 50 fs

- TREX:

2.7 J in 35-40 fs (at present)

===> ignitor beam ===> heater beam ===> colliding beam

guiding

===> capillary guiding

Laser preformed channel guided laser accelerator resulted in quality electron beams

- 10 TW class LOASIS drive laser
- ~100 MeV level e-beams with 0.3 nC charge

C. G. R. Geddes, et al, "*High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding*", Nature, **431**, p538, 2004

 Mono-energetic electron beams

Recipe for a Monoenergetic Beam

- a. Excitation of wake (self-modulation of laser) Onset of self-trapping (wavebreaking)
- b. Termination of trapping (beam loading) Acceleration
- c. **Dephasing**

If L > or < dephasing length: large energy spread

If L ~ dephasing length: monoenergetic

Wake Evolution and Dephasing Yield Low Energy Spread Beams in PIC Simulations

.....

Laser Wakefield Particle Acceleration

High Quality Electron Bunches in Millimeters

3D Vorpal Particle Simulation: INCITE 7 team Cameron Geddes

Visualization: Cameron Geddes and Peter Messmer

Experiments: LOASIS program at LBNL

Code: Vorpal: Tech-X & U. Colorado

2004 Results: High-Quality Bunches

- RAL/IC⁺ (12.5 TW -> ~20 pC, 80 MeV)
- LOA[^] (33 TW -> ~500 pC, 170 MeV)
- For GeV -> 1 PW class laser

Approach 2: preformed channel guided

- LBNL* (9TW, 2mm channel -> ~300 pC, 86 MeV)
- For GeV -> ~10-50 TW class laser^{\$}, longer guiding structure

*S. Mangles et al, *Nature* 431(2004) 535; ^J. Faure et al, *Nature* 431(2004) 541
*C.G.R. Geddes et al, *Nature* 431 (2004) 538; ^{\$}W.P. Leemans et al, *IEEE Trans. Plasmas* Sci. 24 (1996) 331.

Increasing particle energy requires lower plasma density

Reduce n_p

Electron dephasing:
$$L_d \approx \lambda_p^3 / \lambda^2 = n_c / n_p^{3/2}$$

Energy gain: ΔW_d [GeV] ~ I[W/cm²]/n_p[cm⁻³]

- Hydrodynamically formed channels:
 - Relies on inverse Bremsstrahlung heating
 - Efficient for high density
- Capillary discharge channels:
 - Relies on Ohmic heating
 - Works at low density

Esarey et al., IEEE 1996; Leemans et al., IEEE 1996

LOASIS TREX Ti:Sapphire Laser System

*D. J. Spence & S. M. Hooker *Phys. Rev. E* **63** (2001) 015401 R. A. Butler *et al. Phys. Rev. Lett.* **89** (2002) 185003.

L = 33 mm 190 - 310 μm n_e ~ 1-5x10¹⁸ cm⁻³

Provide a content of the second seco

With capillary

pixel

- a = 1.4 (40 TW in 40 fs); P/P_c ~ 2.5
- Energy transmission: 10-70 %
- Acceptance: ~ 10 micron
- Spot size depends on pressure and timing

W.P. Leemans, Nature Physics 2, 696 (2006)

W.P. Leemans et al., Nature Physics 2, 696 (2006)

LOASIS GeV Spectrometer

.....

Horizontal profile -> divergence; Vertical profile ->

energy

$$\delta E_{obs} = \sqrt{\delta E_{real}^2 + \delta E_{div}^2}$$

Magnetic spectrometer details

- 11" dipole magnet (~1.2 T, 8 kW)
- Momentum acceptance: 0.03 1.1 GeV single shot
- Field mapped and optics modeled
- 4 synchronized 12bit CCD cameras
- No slit but limited angular acceptance

Energy vs. screen position

K. Nakamura et al., Phys. Plasmas, submitted

Energy and charge correlation consistent with beam loading effects

Laser intensity dependence

....

BERKELEY LAB

Comments on experience with capillary

- Alignment, timing into discharge and laser power critical
- Cleanest beams near trapping threshold:
 - Lower charge, less beam loading (~ 50 pC)
- Can obtain ~ 0.4 nC but increased energy spread (>20%)
- Energy scaling with power:
 - 12-18 TW -> 0.5 GeV
 - 40 TW -> 1 GeV
 - Fluctuations correlate directly with laser power
- Pump depletion, mode matching requirements, pulse evolution under investigation
- 2D and 3D simulations in progress

2d GeV simulations model experimental bunch

 Beam formed similar to experimental results for parameters close to experiments: 40 TW, 40 fs, 25 μm spot n ~ 5.3 e 18/cm3, 44 μm matched spot

- No or weak injection for nominal experimental parameters
 Sensitive dependence on physical parameters
- Consistent with unstable experimental beams at 1 GeV close to trapping threshold

2d GeV simulations - injection & physical parameters

Injection after significant laser pulse compression & reshaping - similar to 10 TW

- Laser depletes at ~1cm propagation beam decelerates (PWF) over last 2 cm
- Electrons injected late: only approximately half of available E•dl used simulations show sensitivity to density ramp & resultant pulse shaping
- External injection would enable use of lower density at n=2e18, same driver allows dephasing & depletion limited ~3 GeV beam

Beam stability--getting better and better

Guiding + laser control: stable beams at 0.5 GeV

- W.P. Leemans et al., Nature Physics 2006

Laser triggered injection using colliding pulse:

- E. Esarey et al., PRL 1997; C.B. Schroeder et al., PRE 1999 -- three pulse
- G. Fubiani et al., PRE 2004; K. Nakamura et al., AIP proceedings, AAC2004 -- two pulse non-collinear and collinear
- J. Faure et al., Nature 2006

Density transition: stable MeV beam

-C.G.R. Geddes et al., submitted for publication

Pre-plasma control

- Hosokai et al., PRL 2006
- Mangles et al., 2006

Energy Spectrum

- Why Laser Driven Accelerators ?
 - Peak current, bunch duration
 - Free electrons, no material damage issues
 - Compactness
 - Synchronization

$$I_{total}(\omega) = \left\{ N + N(N-1)|g(k)|^2 \right\}_{e}(\omega)$$
$$g(k) = \int_{-\infty}^{\infty} \rho(z)e^{ikz} dz$$

Dominates if
$$\sigma_z < \lambda$$

Leemans *et al.* PRL 2003; POP2004; IEEE2005 Schroeder *et al.*, PRE 2004; van Tilborg *et al.*, Laser Part. Beams2004; PRL2006; POP2006; Optics Lett. 2006

Example: single shot electro-optic sampling

.....

LWFA-driven FEL

Schematic of LOASIS LWFA-driven FEL:

- D. A. Jaroszynski et al., Phil. Trans. R. Soc. A 364, 698 (2006).
- F. Grüner et al., in Proc. of FLS06 (2006).
- C. B. Schroeder et al., in Proc. of FEL06 (www.jacow.org/) (2006).

HHG-seeded LWFA-driven FEL

BERKELEY LAB

Schematic of HHG-seeded, LWFA-driven FEL: [C.B.Schroeder et al., in Proc. of FEL06 (2006).]

^{*} E. Takahashi et al., Phys. Rev. E 66, 021802 (2002).

Gain length and Saturation

cccc

Radiation emission from undulator as diagnostic

Sensitive to energy spread and emittance

Undulator experiments

Initial experiments at ATF

0.5% change in E

P. Catravas et al., Phys. Plasmas 2002

0.25% change in $\Delta E/E$

Secured THUNDER undulator from Boeing Lab retrofitting A-Cave

From: T. Katsouleas -APS-DPP 2005 + new LBNL 1 GeV result

Going to 10 GeV

Petawatt laser

Longer capillary Controlled injection

10 GeV Accelerators

Rep-Rated High-Energy PW Lasers are a key enabling technology for 10-GeV high luminosity experiments

Intensity Frontier: Towards Ultra-Relativistic Physics

Summary

- High gradient frontier:
 - Capillary channel guided LWFA + up to 40 TW laser
 - Reached energies comparable to "big" accelerators:
 - GeV in 3 cm
 - Lower density allows higher beam energy (dephasing)
 - Stable self-injected beams at 0.5 GeV
- Precision frontier:
 - Femtosecond (and attosecond) intense radiation: THz to x-rays
 - MeV e-beams: electron diffraction ?
- Intensity frontier:
 - Vacuum breakdown becoming reachable
- Laser and advanced accelerator technology is progressing rapidly and enables future frontier physics and applications

From handheld to size of a (very) small country

1929

LHC, 2007

Size x 10⁵ Energy x 10⁹