

The HOM measurement of a TESLA cavity (Z84) for HOM-BPM and cavity alignment

Ken.Watanabe: GUAS/AS (KEK) : presenter

Hitoshi.Hayano, Shuichi.Noguchi, Eiji.Kako, Toshio.Shishido (KEK)

Joint DESY and University of Hamburg Accelerator
Physics Seminar 25, September, 2007, DESY

page 1/35

abstract

superconducting rf test facility תJf
abstract:
Measurements of HOMs for the HOM BPM and the cavity miss-alignment was made with TESLA cavity (Z84) at KEK in this summer. The measured passbands were TE111, TM110 and TM011.

When HOM in multi-cell cavity is used as cavity BPM and cavity miss-alignment, the following are important:
(1) The polarization angle of used dipole mode at each cell has same angle. X and Y polarizations are separated.
(2) How much is difference in the electrical mode center and the mechanical center at each cell ?

We tried to measure them by using bead-pull method and antenna scan.
In addition, my group of KEK is developing the STF shape cavity (S.Noguchi, E.Kako et al) for ILC.
We have made a comparison of the HOM performance of STF cavity and TESLA cavity.
This presentation will be report the result of HOM measurement at KEK.

content

(1) Introduction and Purpose
(2) Measurement list

2-1. Checked accelerating mode: frequency and field flatness
2-2. Main HOMs passband : comparison in STF cavity
2-3. Qext value of HOMs: comparison in STF cavity
2-4. Polarization direction measurement
$2-5$. Difference in electrical center and mechanical center of dipole modes
(3) Conclusion

1. Introduction and purpose

superconducting rf test facility
At FLASH, HOM study group is doing the HOM BPM study and HOM based on cavity alignment study.

When HOM in multi-cell cavity is used as cavity BPM and cavity miss-alignment measurement,
the following are important:
(1) The polarization angle of used dipole mode at each cell has same angle. X and Y polarizations are separated.
(2) How much is difference in the electrical mode center and the mechanical center at each cell ?

We tried to measure them by using bead-pull method and antenna scan by used TESLA cavity (Z84) for HOM BPM and HOM base cavity alignment !!!

And my group of KEK is developing STF TESLA shape cavity (S.Noguchi, E.Kako, H.Hayano et al) for ILC. We have made a comparison in the HOM performance of STF cavity and TESLA cavity.

2. Measurement list

superconducting rf test facility sff
(1) Checked the accelerating mode: frequency and field flatness (important !!!)
(2) Measured HOM passband : TE111, TM110, TM011, etc...
(3) Measured HOM Qext value : comparison in STF cavity
(4) Measured the Polarize direction of Main dipole modes : bead-pull method
(TE111 and TM110 passband, distribution of each cell and each mode)
(5) Difference in Electrical mode center and Mechanical center : antenna scan method

superconducting trestractily -1. TM010 passband
 2-1. TM010 passband

 $\boldsymbol{J J}$

TM010 pass band [MHz]

TM010-1 1271.350
TM010-2 1273.675
TM010-3 1277.175
TM010-4 1281.475
TM010-5 1286.050
TM010-6 1290.425
TM010-7 1294.125
TM010-8 1296.500
TM010-9 1297.375

Good frequency tuning for accelerating mode
superconducting rf test facility

2-1. TM010 field pattern

fjf

Amplitude of End cells were lowering in comparison with a center cells.

After EP, STF cavity also has a same tendency.

2-2. Main HOM passband

superconducting rf test facility
Frequency distribution of main HOMs

mode	TESLA [MHz]	STF [MHz]
TE111	1590 to 1780	1590 to 1770
TM110	1785 to 1880	1795 to 1895
TM011	2360 to 2450	2310 to 2400

Few MHz change due to EP and many pre-tuning.

R/Q comparison in TESLA and STF

Mode dipole	TESLA $\mathrm{R} / \mathrm{Q}\left[\Omega / \mathrm{cm}^{2}\right]$	STF $\mathrm{R} / \mathrm{Q}[\Omega / \mathrm{m}]$
TE111-1 $(\pi / 9)$	0.01	22.4
-2	0.14	23.6
-3	0.03	43
-4	0.75	58.7
-5	0.04	46.1
-6	10	549
-7	15.4	2100
-8	2.23	793
TE111-9	1.4	43.2
TM110-1	0.71	119
-2	0.45	89.1
-3	0.33	52
-4	6.47	864
-5	8.75	1270
-6	1.83	394
-7	0.1	0.28
-8	0.18	20
TM110-9 $(\pi / 9)$	0.01	0.0005

Mode Mono	TESLA R/Q $[\Omega]$	STF $\mathrm{R} / \mathrm{Q}[\Omega / \mathrm{m}]$
TM011 $-1(\pi)$	0	0.33
-2	0.17	0.11
-3	0.65	3.31
-4	0.65	0.84
-5	2.05	8.65
-6	2.93	6.26
-7	6.93	37.8
-8	67.0	188
$-9(\pi / 9)$	79.5	96.8

Note: dipole mode unit is different.

Calculated by Anton (DESY) and E.Kako (KEK)

2-3. Qext value of HOMs

both cavity were measured by room temperature
TM011 damping is weak in STF cavity.
More improvement as like a TESLA
(rotation angle etc...)
TE111 and TM110 is all most same.
Probe conditions:
TESLA Z84 : probe 12 mm , gap 0.3 mm
STF \#3 : probe 12mm, gap 2 mm
STF cavity has a broad gap.

Tip diameter $=12 \mathrm{~mm}$

Used probe forqESLA cavity

Important point : for HOM BPM etc...

1) The polarization angle of used dipole mode at each cell has same angle.
(linear polarize)
2) X and Y polarizations are separated for used dipole mode. 90 deg?
(HOM BPM case : TE111-6)

To check them, try to measure by using bead-pull method (off center scan).
Of course, we were known that TE111-6 mode can be used as HOM BPM. (good V -curve and phase response). But, to search the field distribution in inside cavity is important, and is useful to estimate the reasonable of the this mode.

Note : this measurement was one cavity only and room temperature.
When 2 K , the coupling beta of modes are changing. (so possible to change a polarization ?), But, 2K measurement is difficult. (beam ?)

Set up (bead-pull measurement)
superconducting rf test facility

Define of polarize direction

תJf
superconductina rf test facilitv
=
superconductina rf test facilt

Sample：Data pick－up and fitting

Jf

Peak value is defined with polarize angle

Polarize angle and fitting error

TE11 and TM11 mode case ：
E_{ϕ} in the $\mathrm{R}=\mathrm{R}$ ？，when Z （beam axis）and R （off cebter） are decided，finally
$\mathrm{E}_{\phi} \propto \cos (\mathrm{n} \phi)$ or $-\sin (\mathrm{n} \phi)$
From the relation of $E \propto(\text { delta } f / f 0)^{1 / 2}$
Become fitting function as
delta $f \propto A \cos ^{2}(\phi+\xi)$
Where A is delta f, ξ is polarize angle．

$\mathrm{y}=\mathrm{m} 1 * \cos (\mathrm{~m} 0+\mathrm{m} 3){ }^{2} 2+\mathrm{m} 4$		
	值	エラ
m1	49607	2912.2
m	5.5219	1.8893
m4	1310.4	1652.5
カイ2乗	3． 23722^{+7}	NA

Center scan (metal ball diameter 6 mm)

Off center scan (ceramics ball diameter 6 mm)

Iris part changes delta f.

TE111－6＿polarize＿direction＿delta＿f＿lov

270
300

Polarize angle is 55 deg

$y=m 1 * \cos (\mathrm{~m} 0+\mathrm{m} 3)^{*} 2+m 4$		
	面	エラー
m1	11453	1788.6
m3	－59．492	4.1866
m4	15986	1125.1
カイ2乗	$1.0126 \mathrm{e}+07$	NA
R	－ 0.955	NA
$y=m 1 * \cos (\mathrm{~m} 0+\mathrm{m} 3)^{\wedge} 2+m 4$		
	値	エラー
m1	51476	1833.3
m3	－55．366	0.92882
m4	4895.7	1136.9
カイ2乗	$1.0372 \mathrm{e}+07$	NA
R	0.99749	NA

| - |
| :--- | :--- |
| |
| |
| |

Center scan (metal ball diameter 6 mm)

Off center scan
(ceramics ball diameter 6 mm)

Polarize directions : Z84 TE111-6 high

TE111-6_polarize_direction_delta_f_high

270
Polarize angle is -35 deg

Polarize direction in Z84 TE111-6 : each cell distribution superconducting rf test facility \qquad słf

Same polarize angle at each cell. (Linear polarize)

And separated X and Y polarization. (90deg)

STF cavity also was same tendency.

Mode No.	TE111 : ave. (error), max, min [deg.]			TM110 : ave. error, max, min [deg.]		
	Low	High	Delta	Low	High	Delta
1	Ave. 19 (1.5) Max:23, Min:13	$\frac{\text { Ave. -68 (0.8) }}{\text { Max:-66, Min:-72 }}$	$\frac{87(2.0)}{\text { Max:95,Min:80 }}$	$\begin{aligned} & \hline \text { Ave. } 86(0.6) \\ & \hline \text { Max89, Min:83 } \end{aligned}$	$\begin{aligned} & \text { Ave.-1 (0.8) } \\ & \text { Max:3, Min:-4 } \end{aligned}$	$\frac{87(1.2)}{\text { Max:92,Min:82 }}$
2	$\begin{aligned} & \text { Ave. } 23(0.3) \\ & \text { Max:24, Min:22 } \end{aligned}$	Ave. -67 (0.6) Max:-65, Min:-69	$\begin{gathered} 90(0.8) \\ \text { Max:92,Min:88 } \end{gathered}$	$\begin{aligned} & \text { Ave. } 16(0.4) \\ & \text { Max:18, Min:14 } \end{aligned}$	Ave. -69 (1.1) Max:-60, Min:-73	$\begin{gathered} \frac{86(1.3)}{\text { Max:90,Min:76 }} \end{gathered}$
3	Ave. 18 (1.5) Max:28, Min:14	Ave. -76 (0.8) Max:-74, Min:-82	$\begin{gathered} 94(2.1) \\ \text { Max:110,Min:90 } \end{gathered}$	$\frac{\text { Ave. -56 (0.3) }}{\text { Max:-54, Min:-58 }}$	$\begin{aligned} & \text { Ave. } 40 \text { (0.7) } \\ & \text { Max:43, Min:37 } \end{aligned}$	$\frac{96(0.7)}{\text { Max:99,Min:93 }}$
4	Ave. 17 (0.6) Max:21, Min:16	Ave. 74 (0.4) Max:-73, Min:-76	$\frac{90(0.6)}{\operatorname{Max}: 94, \operatorname{Min}: 89}$	$\begin{aligned} & \text { Ave. } 77(0.8) \\ & \text { Max:82, Min: } 74 \end{aligned}$	Ave. 4 (1.4) Max:13, Min:0	$\frac{74(1.7)}{\text { Max:80,Min:63 }}$
5	Ave. 49 (0.5) Max:52, Min:46	Ave. -45 (0.6) Max:-43, Min:-48	$\begin{gathered} \underline{93(1.0)} \\ \text { Max:99,Min:89 } \end{gathered}$	$\frac{\text { Ave. } 27 \text { (1.7) }}{\text { Max:31, Min:12 }}$	Ave. 87 (3.2) Max:111, Min:77	$\begin{gathered} \underline{\mathbf{6 0}(4.1)} \\ \text { Max:82,Min:47 } \end{gathered}$
6	Ave. 55 (1.0) Max:60, Min:51	Ave. -35 (1.0) Max:-31, Min:-39	$\begin{gathered} 91(1.8) \\ \text { Max:96,Min:82 } \end{gathered}$	$\frac{\text { Ave. } 93 \text { (1.1) }}{\text { Max:98, Min:86 }}$	$\frac{\text { Ave. } 9 \text { (1.0) }}{\text { Max:15, Min:5 }}$	$\begin{gathered} 84(1.9) \\ \text { Max:93,Min:74 } \end{gathered}$
7	Ave. 52 (0.9) Max:56, Min:49	Ave. -38 (0.5) Max:-36, Min:-40	$\begin{gathered} 91(0.9) \\ \text { Max:93,Min:86 } \end{gathered}$	Ave. 115 (1.0) Max:119, Min:109	$\begin{aligned} & \text { Ave. } 30(1.0) \\ & \text { Max:37, Min:27 } \end{aligned}$	$\begin{gathered} \frac{86(1.9)}{\text { Max:92,Min:73 }} \end{gathered}$
8	Ave. 43 (0.5) Max:45, Min:41	Ave. -46 (0.5) Max:-43, Min:-49	$\frac{90(0.5)}{\text { Max:92,Min:88 }}$	$\frac{\text { Ave. } 81 \text { (2.7) }}{\text { Max:96, Min:69 }}$	$\begin{aligned} & \text { Ave. -5 (0.9) } \\ & \text { Max:-2, Min:-9 } \end{aligned}$	$\begin{gathered} \text { Max: } 100, \text { Min: } 72 \end{gathered}$
9	Ave. 37 (0.6) Max:40, Min:35	Ave. -49 (0.6) Max:-46, Min:-51	$\frac{86(1.1)}{\operatorname{Max}: 91, \operatorname{Min}: 81}$	Ave. 97 (2.5) Max:107, Min:88	$\begin{aligned} & \hline \text { Ave. } 13 \text { (1.3) } \\ & \hline \text { Max:17, Min:10 } \end{aligned}$	$\begin{gathered} 82(3.5) \\ \text { Max:91,Min:72 } \end{gathered}$

TE111-1,2,3,4 were same, and TE111-5,6,7,8,9 were same.
TM110 modes had a various angle.

Error: standard error,
Delta: High - Low [deg]

Delta $f[\mathrm{~Hz}]$ vs delta angle [deg] in doublet of dipole mode
superconducting rf test facility

When the delta $\mathrm{f}[\mathrm{Hz}]$ of doublet is small less than about 100 kHz , its delta angle is not 90 deg. due to the overlap each other of doublet.

mode	Delta $\mathrm{f}[\mathrm{kHz}]$ of doublet	Delta angle [deg] of doublet
TE111-1	644	87
-2	361	90
-3	380	94
-4	249	91
-5	408	92
-6	398	90
-7	406	90
-8	267	90
-9	366	86
TM110-1	355	87
-2	361	85
-3	167	96
-4	117	78
-5	48	60
-6	102	84
-7	232	86
-8	93	86
-9	627	82

2-5. Difference of Electrical mode and Mechanical center 5

To used HOM as cavity alignment, agreement of electrical mode and mechanical center is important.

We tried to be measurement it by using antenna scan method.
How does it see a result ?, Is this method possible?

In addition, we tried to be cross-check the polarize direction by measured bead-pull method.

Measured polarize direction by bead pull method and the orthogonal axis of it scanned.

Concentricity target : 100 um

Machinable ceramics

02

condition-1

Measured S21(transmission) max search vs antenna position

Spectrum of condition-1 (HOM2 S22 and S21)
superconducting rf test facility

Single peak (TE111-4)

Twin peak (TE111-6)

Spectrum pattern (S22) dependent on the polarize direction
Try measurement with both case תJf

superconducting rf test facility
$\bullet \mathrm{XX}$-scan $\mathrm{YY}=0 \mathrm{~mm}$ linearMag $\quad \square \mathrm{XX}$-scan $\mathrm{YY}=0 \mathrm{~mm}$ phase

Low peak: polarize direction $=+55 \mathrm{deg}$
High peak and Low peak is orthogonal.

This mode had the response (amplitude and phase), but could not be observed V-curve at the mover area. However, in scanning the orthogonal axis of YY, had the phase response. Maybe signal had a possibility mode mix.

Result of condition－1 」およ

superconducting rf test facility

mode	HOM2（reflection） condition－1	Polarize direction（bead）	Off－center［deg］	
TE111－1	Single peak：High	L：19deg，H：－68 deg	-2.6 mm	
TE111－2	Single peak：High	L：23deg，H：－67 deg	-2.4 mm	
TE111－3		Single peak：High	L：18deg，H：－76 deg	-1.5 mm
TE111－4		Single peak：High	L：17deg，H：－74 deg	-2.0 mm
			-0.5 mm	
TM110－4		Single peak：Low	L：77deg，H： 5 deg	-1.5 mm
TM110－5		Single peak：High	L：27deg，H： 87 deg	-1.0 mm
TM110－6		Single peak：Low	L：93deg，H： 9 deg	+0.8 mm
TM110－8	Single peak：Low	L：81deg，H：－4 deg	-0.4 mm	
TM110－9	Single peak：Low	L：98deg，H： 13 deg		

Could be measured a single peak coupling mode only．Other modes were twin peak at HOM2 reflection．
Twin peak case，could be seem response of dependence antenna position，but could not observe a V － curve．

The off－center had the shifting HOM coupler side，about few millimeters．
Note，this measurement has the strong effect of the end cell，not all cells．

Condition-2
 תJf

Changed cavity position!!

Excited from HOM2 side, pick-up from HOM1 port.

Result of condition-2

superconducting rf test facility

Could not observe the V-curve.
Due to input coupler port? (break a symmetrical geometry of beam pipe? Or more big off centers ?)
Try to change the antenna position (more depth to insert length, measured mode etc...), but could not observe the good V-curve.

3. Conclusion

superconducting rf test facility
Measurements of HOMs for the HOM BPM and the cavity miss-alignment was made with TESLA cavity (Z84) at KEK in this summer.

1) Accelerating mode frequency was very good for 2 K operation. Field flatness was about 90%.
2) TE111 and TM110 passband was all most same, but TM011 was different about -50 MHz lower than TESLA.
3) TE111 and TM110 Qext was all most same, but TM011 was weak in STF cavity, more improvement to obtain the strong damping as like the TESLA.
4) All dipole mode polarize direction at each cell were the linear polarize. Not circular polarize. Made a table all TE111 and TM110 passband of polarize directions.

When the doublet delta $\mathrm{f}[\mathrm{Hz}]$ is small less than 100 kHz , its delta angle is not 90 deg. Due to the overlap each other of doublet.
5) Measured polarize angle by bead-pull method, and antenna scan result was same polarize angle. Could be cross-check from both method result.

Could observe the V-curve at single peak coupling modes, in this case, off-center had the shifting HOM coupler side, about few millimeters. However, this measurement has the strong effect of the end cell.

The twin peak mode and HOM2 side exited case could not measure these.

Thank you for your kind attention !!

