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History

o Coupled-bunch instability observed at KEK-PF.

o Interpretation of the instability using photo-
electron cloud model.

o The instability was observed at BEPC (China).
o Study of electron cloud effect for design of KEKB.

o Studies for PSR, LHC, SPS, SNS, JPARC, ILC
...many machines.



Multi-bunch instability observed at
KEK-PF

o KEK-PF is a 2" generation light source operated
by both of positron and electron beams. E=2.5
GeV L=186 m, Frf=500MHz.

o Instability was observed at multi-bunch operation
of positron beam. N, ,..,=200-300 for h=312.

o Very low threshold. I~15-20mA.

o The instability was not observed at electron beam
operation.

o Had similar instability been observed at DORIS?
Multi mode instability (197~ or 198~7?)



|lzawa et.al., Phys. Rev. Lett. 74, 5044 (1995).
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Interpretation of instability due
to photo-electron cloud

Positron beam emits synchrotron radiation.

Electrons are produced at the chamber wall by
photoemission. Production efficiency ~ 0.1e/y.

Electrons are attracted and interacts with the positron
beam, then absorbed at the chamber wall after several
10 ns. Secondary electrons are emitted according the
circumferences.

Electrons are supplied continuously for multi-bunch
operation with a narrow spacing, therefore electron
cloud are formed.

A wake force is induced by the electron cloud, with the
result that coupled bunch instability is caused.

K. Ohmi, Phys. Rev. Lett., 75, 1526 (1995).
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Recipes for electron cloud
build-up are written in this
paper.

First figure for electron cloud build-up
Model

direction, the practical density is given by multiplyipg
2 % 10* by the value from Fig. 2 i it
we use 100, as in the figure, the density is 2 X 10° ¢m ™2,
We consider the space-charge effect of the electron dis-
tribution. The electric field due to the peak distribution,
which is a few hundreds in the figures, can be estimated to
be ~100 V/m. The field from the beam is ~600 V/m at
a distance of 1 cm from the beam center. Thus, when the
electron motion is near the beam, the field of the beam is
dominant,

.



Number of produced electrons

Number of photon emitted by a positron par unit

meter. Y = o Oy a : fine structure const=1/137
Y \/g L
¢KEKB-LER  y=6850 = Yy=0.15/m
*KEK-PF =4892 =2 Yy=1.7/m

Bunch population
N,=3.3x10"° (KEKB-LER design 2.6A)

N,=5x107 (KEK-PF 400mA)
Quantum efficiency (n=n_ /n ) 0.1
Energy distribution 10£5 eV

KEKB-LER Y .=0.015e¢/m.e”
KEK-PF Y —O 17 e/m.e” ,
ionization 108 e- /m e’ , proton loss(PSR) 4x10-° e//m.p



Electron cloud density given by
simulation

Electron cloud density for bunch passage
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Measurement of electron cloud
(Y. Suetsugu, K. Kanazawa et.al.)
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Experiment and simulation

results

Ipe=10 uA at 1,.=600 mA at
1.5 m down stream of Bend.

Electron current at p.e. monitor (N+=3.3x1010; 8ns spacing; only primary p.e.)
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Coupled-bunch instability (CBl)
caused by the electron cloud

o Wake field is induced by the electron
cloud

o Coupled bunch instability due to the
wake field causes beam loss.



Wake force and unstable mode
for KEK-PF
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Measurement of the coupled
bunch instability in KEKB

o Fast amplitude growth which causes beam loss has been
observed.

o The mode spectrum of the instability depends on excitation of
solenoid magnets.

M. Tobiyama et al., PRST-AB (2005)
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K.Ohmi, PRES5,7550

Tracking simulationse)

® K.Ohmi, PAC97, pp1667.
Solve both equations of beam and electrons simultaneously
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CBI mode spectra in KEKB EEETRos
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Effect of Solenoid magnet

o Solenoid magnets suppress the electron cloud effect
partially.

o We can observe electron cloud effect characterized by
solenoid magnet.

o Cloud distribution (K. Ohmi, APAC98)
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Single bunch instability

Vertical Beam size blow up of positron

beam at commissioning of KEKB

o A beam-size blow-up has been observed above a
threshold current. The threshold is given for total
current.

o The blow-up was observed in multi-ounch operation,
but was perhaps single bunch effect. Beam size was
measured by putting a bunch with an arbitrary current
In a bunch train.

o Luminosity is limited by the beam size blow-up.

o Synchro-beta sideband induced by electron cloud
head-tail instability was observed.



at IP(micron)

Verticalbeam size

o Beam size blow-up
o Synchro-beta sideband

LER blowup
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Head-tail instability model

o Simulation using Gaussian model,

the

CBI.

o Wa

CBI.

same method as the study for

Ke field approach, the same as

o PIC simulation (like beam-beam
strong-strong)



Simulation using Gaussian micro-bunch model

® © Electron cloud Positronylg(unch
y !
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L K(9)x,, = SF(x,, X, ;0()d(s - 5,)
y A

ds’
g B

d’x,
dt’

L =2NrcFo(x, ;- X, ;0(s)0(t~1(s.,))




@ © Bunch head-tail motion w/wo synchrotron motion.

z (mm) 51 Aplp z (mm) 51  Aplp

Vertical amplitude of the macro-particles in the

longitudinal phase space are plotted. Multi-airbag
model (z-0) is used to visualize in these figures.

K. Ohmi, F. Zimmermann, PRL85, 3821 (2000).



O Hea«ii-tail and strong head-tail instability

V. size (mm)

1 2 3 4 1 2 3 4 1 2 3 4
Turn (x100) Turn (x1000) Turn {(x1000)

pe=2x101! , 4x10%!, 10x10% m-3

o Unstable for Positive chromaticity --- head-tail

o Unstable for p.= 10x10"" m-3 irrelevant to chromaticity --
- strong head-tail



Wake field approach

o Linearized model.

o Numerical calculation including
nonlinearity. (Similar way to the
calculation of the multi-ounch wake
field)

W=K A L 2. Sin(we Z)
A (O, +0,)0, ¢ C

K=1 for Linearized model. K~2-3 for the
numerical calculation.



Vertical wake field given by the numerical
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o (1,1) is consistent with the analytical calculation.

o (10,10) is twice larger than (1,1).

o Instability threshold is calculated by the wake force.

K. Ohmi, F. Zimmermann, E. Perevedentsev, PRE65,016502 (2001)



Threshold of strong head-tall

instability

1111111111111111111111111

o Mode coupling theory
Threshold : p,=1-2x10"?m-

o Coasting beam model

Q=min(Q,,, w,0,/C)

o - 2yv. w,0_/c
eth \/gKQVOﬁL . =\/ Aprecz
* \o,(o,+0)

Threshold : p,=5x10"'m-

o Coasting beam model is better
coincident with simulation.



Simulation with Particle In Cell
method

o Electron clouds are put at several
positions in a ring.
o Beam-could interaction is calculated by

solving 2 dimensional Poisson equation
on the transverse plane.

o A bunch is sliced into 20-30 pieces along
the length.

SRNERE

1

\




e | PIC simulation

Snap shot of beam and cloud shape for v;=0 and v,>0

/
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BBU Head-tail motion
Pink: size along bunch length
yellow: <y> of cloud

Dark blue: <y> of bunch



sigy (m)

0.0002

0.00015 |-

0.0001

S5e-05

0

o v.=0 no threshold, v.>0 clear threshold.
Pe th=5x101"m3
The cloud density is consistent with that predicted by the

Threshold behavior
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measurement of electron current.

o This beam size blow-up can be understood as strong
head-tail instability caused by electron cloud.
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Solenoid winding in KEKB ring

(0) C-yoke permanent magnets are attached in the arc
section of ~800m

(1) Solenoids are wound in the arc section of 800m
(Sep. 2000).

(2) Solenoids are wound additionally in the arc section
of 500m (Jan. 2001).

(3) Solenoids are wound in the straight section of
*100m (Apr. 2001).

(4) Add solenoids even in short free space (August
2001).

(5) 95 % of drift space is covered (~2005).
(6) Solenoid in %2 of quadrupole magnets (2005)
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Luminosity for Solenoids ON/OFF

o When solenoids turn off, stored current is limited to a lower value
than usual operation due to beam loss (coupled bunch instability).

o Luminosity is quite low (~half).

Specific Luminosity for Solenoid ON/OFF (measurement at May.2001)
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Effect of additional solenoid
Typical luminosity behavior at Dec. 2000
and March. 2001

tonger and longer

L (x1039)
L for solenoid ON/OFF (2000 & 2001)
2600 e LIpFI fvdata1/Callision/LumHist/ ThisMonth/Lum2000_12_26_2_3_13.d2¢ g =
260 | : “°%&“3&‘5‘&°<';"§:ﬁ’;‘.&n“ﬂ‘u'::ﬁHﬁm‘o"n}h"{".ﬁﬁ%%oﬁﬁf fiq)ﬁ“ﬂ 2 1
e e 1300 m
200 of

g 2000 . % ’

% 1800 | A -;» | . d - ]
-l i olenol | Beam-beam tuning also
o | B covers 800 m | improves the

5 . .
anly ¥ | luminosity.
1000 ' . L L . '
350 400 450 500 550 600 650 750
. 750mA
o Adding solenoid, positron current with peak luminosity
Increases.

o Now peak luminosity is given at around 1600-1800
mA.



| Luminosity history of KEKB

Luminosity of KEKB
June 1999 - Dec. 2005

Peak Luminosity
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Measurement of synchro-beta
sideband - evidence for head-talil
instability

o If the beam size blow-up is due to head-tail
iInstability, a synchro-betatron sideband should be
observed above the instability threshold.

o The sideband spectra was observed with a bunch
oscillation recorder.

o The threshold was consistent with simulations.

o The sideband appear near ~v,+v,, while simulation
gives ~v,-vg, like ordinary strong head-tail instability.



Fourier power spectrum of BPM data
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J. Flanagan et al., PRL94, 054801 (2005)



Electron cloud induced head-tail
mStabIIIty Simulation (PEHTS)

o E. Benedetto, K. Ohmi, J. Flanagan HEADTAIL gives
o Measurement at KEKB 00002 similar results
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the sideband

Feedback does not suppress

o Bunch by bunch feedback suppress only betatron
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ILC damping ring:
from experiences in KEKB

o Without solenoid, the strong head-tail instability
occurs at 1000 bunch and 500 mA.

o Simulations (PEHTS) gives threshold density
0.8x10"2 cm at the beam parameters.

o With solenoid, the strong head-tail instability occurs
at 1300 bunch and 1700 mA. Simulations gives
threshold density 0.4x10'? cm3 at the beam
parameters.
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Cloud density - current relation

2510°

o Electron current

o Cloud density is current
times electron travel time.

o High current means a
short travel time.

o The cloud density may /
apprOXImately be Ilnear for 00 200® 4i;rm§0m§mazuom10i00 12%00 1400 1600

current in circular LER Beam Current [mA]
chamber.

o Solenoid reduces cloud
density 1/6.

o Antechamber reduces
cloud density 1/10 at <1A.

B Circular Chamber
1510

Electron Current [A]

= . Ante-Chamber

Measurement by
Y.Suetsugu et al.



Low emittance operation in KEKB for ILC

Nor ¢ Nor ¢ Low e-I Low e-II
E(GeV) |3.5 3.5 2.3 5.0
N, (1010 3.3 7.6 2.0 2.0
N, 1000 1338 1250 2500
| (MA) 500 1700 400 800
g, (Nm) 18 18 1.5 1.0
o,(mm) |6 14 9 9
Ve 0.024 0.024 0.011 0.011
W, O,/C 3.1 5.1 12.5 12.5
Petn(mM=) | 8x10™ 4x1011 1x1011 2.2x10"
Pe(M3) 8x107 4x1011 0.6x10"" | 2.7x10"

o  m,: electron frequency in a bunch

O Petn: threshold density,
o  pe: estimated or predicted electron density for cylindrical chamber




o, (mm)

Threshold cloud density given by PEHTS
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Cloud density and threshold at
the low emittance operation

o Cloud density is not considered to depend on
emittance strongly.

o Electron density is proportional to energy for the case
of photoelectron dominant, and is also proportional to
beam current.

o Current is 400mA which is 1/4.25 of the present
KEKB.

o The cloud density at low ¢-I can be below the
threshold.

o These should be studied experimentally at KEKB.



For actual Damping ring

o Higher energy gives high cloud density, but the
threshold increases due to the larger vy factor.

o The scaling of p, /v, was perfect for coherent
instability in simulations and theory:i.e., a higher v,
IS higher threshold.

o Ante-chamber can suppress electrons further.

o The actual damping ring with 3000 m
circumference, low e-II, may be within the range

depending on the study progress.

o The electron cloud instability does not seem to be
very serious.



Incoherent emittance growth

o Blow the coherent threshold.

o The growth is very slow compare than
radiation damping rate.
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Two values wake field, W(z4,z,)

preliminary
o Z, and z, are perturbation and action
position. Ordinary wake is W(z,-z,).

KEKB ILC-DR

N.
= [W(z2)p,(2)dz
Y

Ap(z) =
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Summary

Electron cloud effect has been studied during KEKB
commissioning.

Coupled bunch instability (CBI), which was due to electron
cloud, was observed at KEK-PF, BEPC and KEKB.

Simulations can explain mode spectra and growth rate for
solenoid ON/OFF.

Beam-size blow-up in multi-bunch operation had been observed
had degraded their luminosity.

The size blow-up is caused by strong head-tail instability due to
electron cloud. Coherent synchro-betatron sideband signal has
been observed above a threshold which changes for solenoid
ON/OFF. Simulations also gave the sideband spectrum.

The peak luminosity of KEKB is achieved 1.72x103* cm=s-1 by
winding the solenoid magnets.

The electron cloud instability does not seem to be very serious
in ILC damping ring.

Does the two values wake field model explain the sideband and
other effects of electron clouds?




