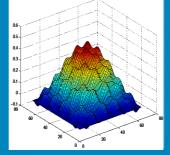
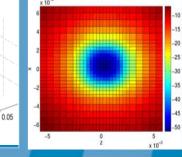


-0.05



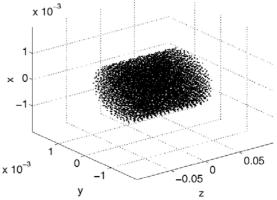


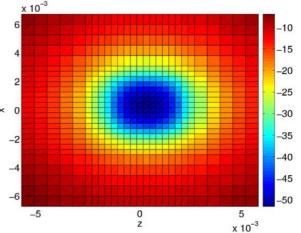
3D Space Charge Routines: The Software Package MOEVE and FFT Compared

Gisela Pöplau

DESY, Hamburg, December 4, 2007

- Algorithms for 3D space charge calculations
- Properties of FFT and iterative Poisson solvers
- Optimal iterative Poisson solver: multigrid technique
- Numerical investigations:
 - Multigrid performance
 - ASTRA: Tracking example with FFT and multigrid
 - Numerical studies of cylindrical shaped bunches





The 3D Space Charge Model

В	Bunch in laboratory frame	Mesh-based electrostatic solver in rest-frame Bunch is tracked in laboratory frame
	Bunch in rest frame	Bunch in rest-frame is expanded by γ $\gamma = 1/\sqrt{1 - v^2/c^2}$
	Meshlines	meshline positions follow beam density
ρ	Charge density	Trilinear interpolation to obtain charge density
$-\Delta \phi = \frac{\rho}{\epsilon_0}$	Poisson equation	Solve Poisson's equation
$E = -\operatorname{grad} \boldsymbol{\varphi} \boldsymbol{B} = 0$	Interpolation	2 nd order interpolation for the electrostatic field E
$\{E',B'\}=\mathcal{L}\{E\}$	Lorentz transformation to laboratory frame	Transform E to E' and B' in laboratory frame
FAKULTÄT FÜR INFOR UND ELEKTROTECHNI UNIVERSITÄT ROSTOCI	RMATIK K K	3 Gisela Pöplau

Computation of Space-Charge Fields

Due to Hockney, Eastwood

Particle-Mesh Method

Solve Poisson's equation

 $-\Delta \phi = \frac{\rho}{\epsilon_0}$

- Good accuracy for "smooth" particle distributions
- Fast with best solver O(M): multigrid methods

Particle-Particle Method

$$E(r) = \frac{1}{4\pi\epsilon_0} \sum_{\ell=1}^{M_p} q_{\ell} \frac{r - r_{\ell}}{\|r - r_{\ell}\|^3}$$

- No mesh required
- Straightforward summation O(M_p²)

Particle-Particle Particle-Mesh Method

Particle-Mesh Method

 $-\Delta \phi \ = \ \frac{\rho}{\epsilon_0}$

FFT Poisson solvers

Boundary conditions

- Free space boundary
- Periodic boundary
- Perfect conducting rectangular box (with Fast Sine Transformation)

G: Green's function

Iterative Poisson solvers

$$-\Delta \varphi = \frac{\rho}{\epsilon_0} \text{ in } \Omega \subset \mathbb{R}^3$$

Finite difference discretization
$$Au = f$$

Boundary conditions

- Free space boundary
- Perfect conducting rectangular box
- Perfect conducting pipe with elliptical cross section

Solvers & Properties

$$-\Delta \phi = \frac{\rho}{\epsilon_0}$$

FFT Poisson solvers

- FFT
- FFT based algorithms (FST)

Step size: equidistant

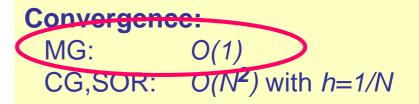
Numerical effort: $O(M \log N)$ **Number of grid points** (one coordinate): $N+1=2^t+1$

Iterative Poisson solvers

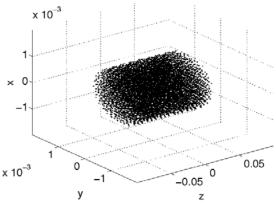
- Multigrid (MG)
- Multigrid Preconditioned
 Conjugate Gradients (MG-CG)
- Jacobi Preconditioned CG
- Successive overrelaxation (SOR)
- BiCG, BiCGSTAB

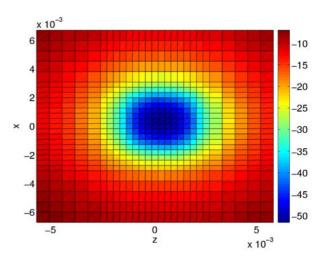
Step size: non-equidistant

Numerical effort: *O(M)* (per iteration step)



- Algorithms for 3D space charge calculations
- Properties of FFT and iterative Poisson solvers
- Optimal iterative Poisson solver: multigrid technique
- Numerical investigations:
 - Multigrid performance
 - Numerical studies of cylindrical shaped bunches
 - ASTRA: Tracking example with FFT and multigrid





Multigrid Technique

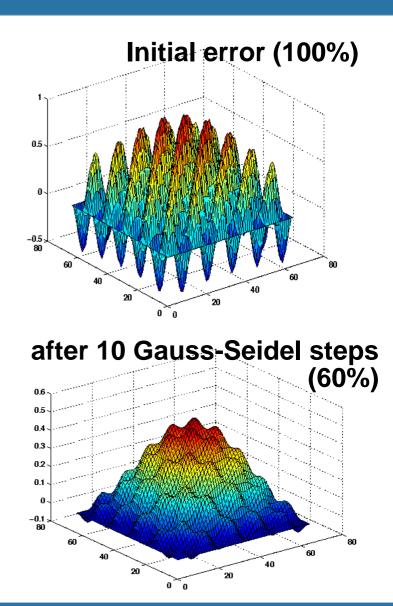
V-0		
	e grid • relaxation / interp.: e _H ->e _h cgc: V _h ^{new} =V _h +e _h • relaxation interpolation + coarse grid correction interpolation + coarse grid correction	Image: state
solution coar	sest grid	Coarse grid

Gauss-Seidel Relaxtion

- Gauss-Seidel relaxation is part of multigrid
- **↑**Simple implementation
- **↑**Convergence acceptable for
 - low number of mesh lines

↓Convergence:

• Gauss-Seidel: O(h²)

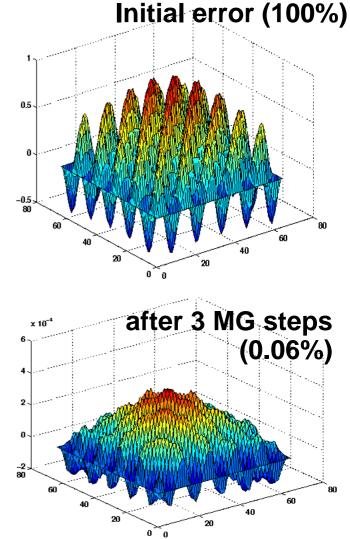


Multigrid & MG-PCG

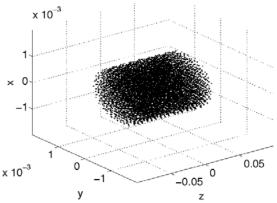
Convergence O(1) on non-equidistant grids

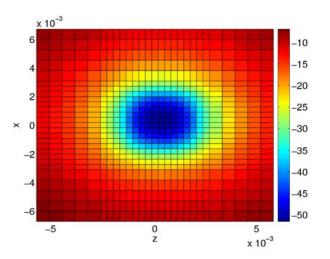
Convergence O(1) on grids with high aspect ratios

- Implementation is more complicated
- Implementation has always to be adapted to the problem



- Algorithms for 3D space charge calculations
- Properties of FFT and iterative Poisson solvers
- Optimal iterative Poisson solver: multigrid technique
- Numerical investigations:
 - Multigrid performance
 - Numerical studies of cylindrical shaped bunches
 - ASTRA: Tracking example with FFT and multigrid

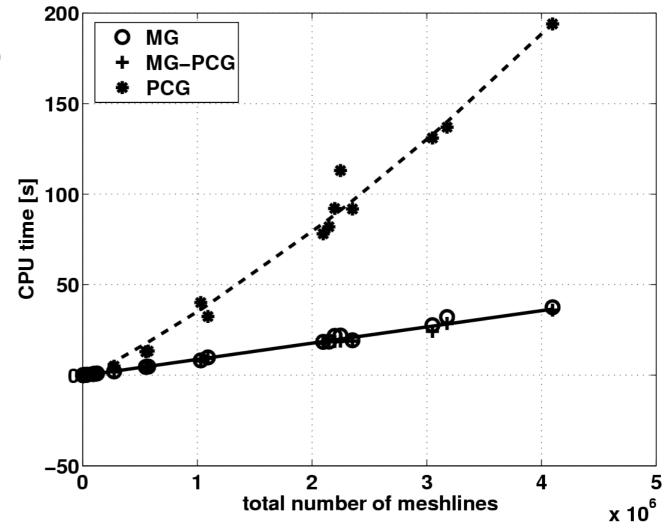




Multigrid Performance (I)

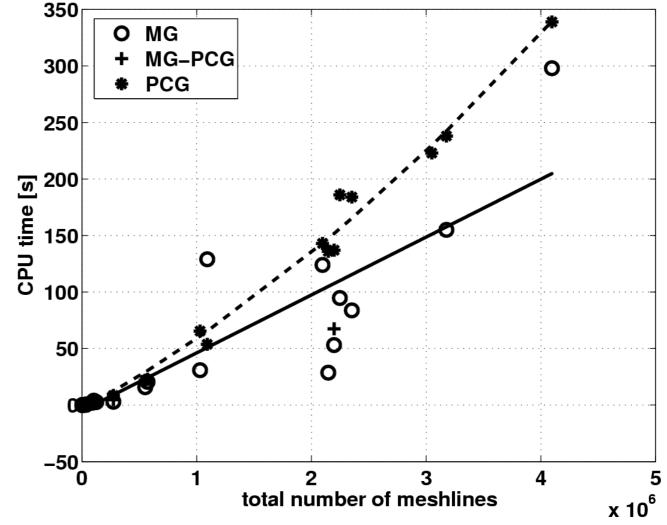
 iterations until rel. residual<10⁻⁹

- equidist. mesh
- 8-9 iterations
- Dirichlet bound.

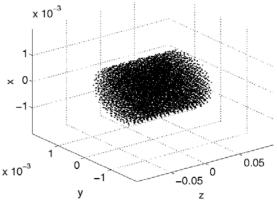


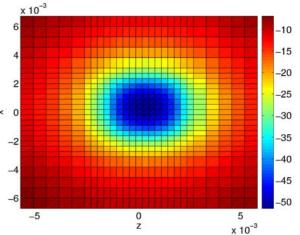
Multigrid Performance (II)

- iterations until rel. residual<10⁻⁹
- equidist. mesh
- open boundaries



- Algorithms for 3D space charge calculations
- Properties of FFT and iterative Poisson solvers
- Optimal iterative Poisson solver: multigrid technique
- Numerical investigations:
 - Multigrid performance
 - ASTRA: Tracking example with FFT and multigrid
 - Numerical studies of cylindrical shaped bunches

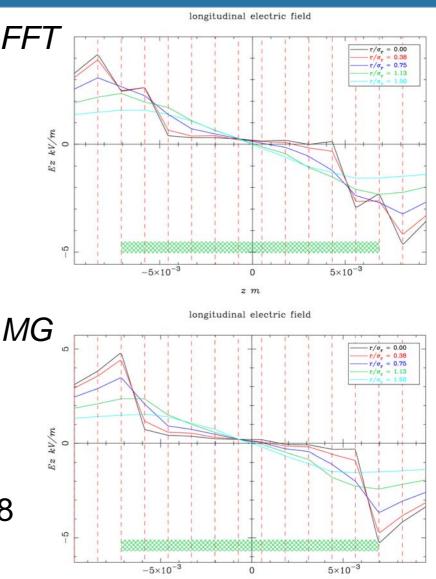




Simulations with ASTRA

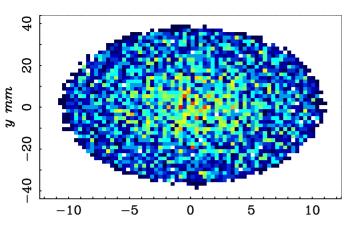
EPAC 2006

- Gaussian particle distribution: $\sigma_x = \sigma_y = 0.75 \text{ mm}$, $\sigma_z = 1.0 \text{ mm}$
- 10,000 macro particles
- charge: -1 nC
- energy: 2 MeV
- tracking distance: 3 m
- quadrupol at z=1.2 m
- number of mesh points: 32,768 (Poisson solver): N_z=32



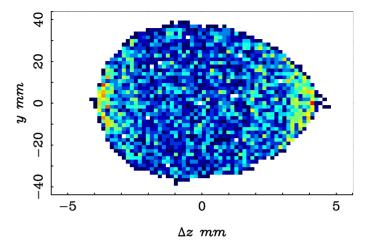
z m

Particle Distribution at z=1.47 m

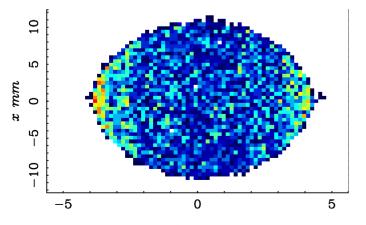


Front view

x mm



Top view

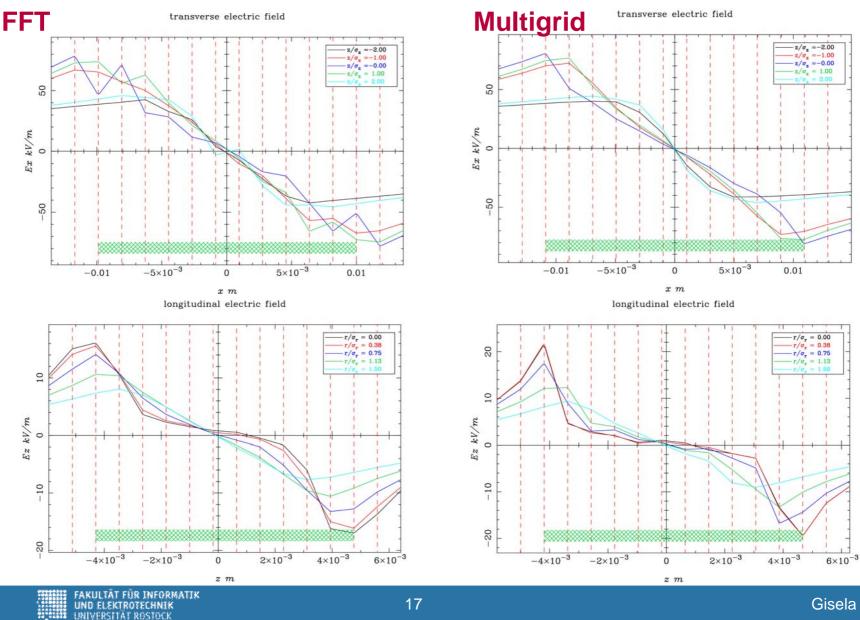


$$\Delta z mm$$

Output of Astra routine: *postpro*

Drift with Quadrupole after 1.47 m

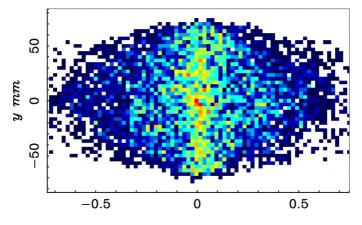
UNIVERSITÄT ROSTOCK



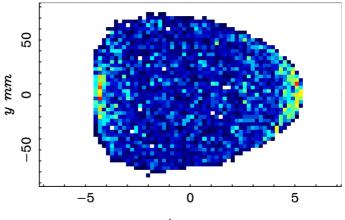
Gisela Pöplau

Particle Distribution at z=2.00 m

Front view

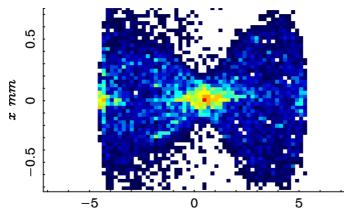


x mm



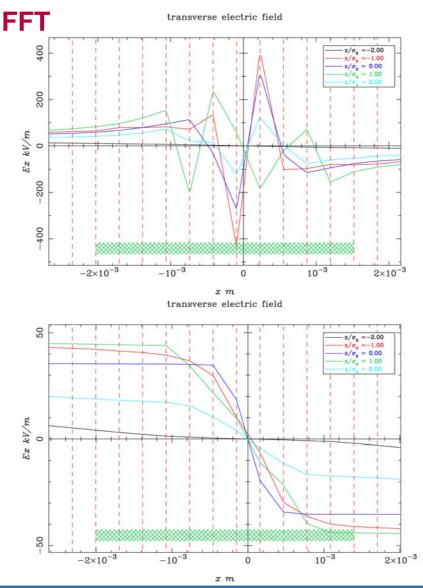
 $\Delta z mm$

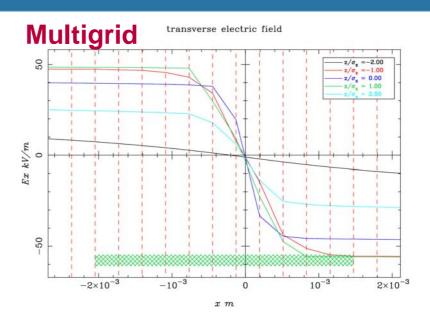
Top view



Output of Astra routine: *postpro*

Drift with Quadrupole after 2.0 m





FFT with integrated Green's function

(Qiang et al, 2006)

Integrated Green's Function

Qiang et al, 2006

$$\varphi(x,y,z) = \frac{1}{4\pi\varepsilon_0} \int \int \int G(x,x',y,y',z,z') \rho(x',y',z') dx dy dz$$

Green's function

$$G(x, x', y, y', z, z') = \left((x - x')^2 + (y - y')^2 + (z - z')^2 \right)^{-1/2}$$

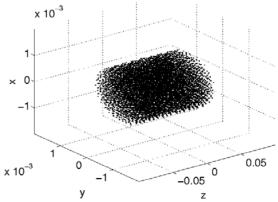
Integrated Green's function

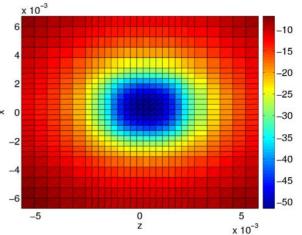
$$\begin{split} \tilde{G}(x_{i}, x_{i'}, y_{j}, y_{j'}, z_{k}, z_{k'}) &= \\ \int_{x_{i'}-h_{x}/2}^{x_{i'}+h_{x}/2} dx \int_{y_{j'}-h_{y}/2}^{y_{y'}+h_{y}/2} dy \int_{z_{k'}-h_{z}/2}^{z_{k'}+h_{z}/2} dz \, G(x_{i}-x_{i'}, y_{j}-y_{j'}, z_{k}-z_{k'}) \\ \Phi_{i,j,k} &= \sum_{i',j',k'} \tilde{G}_{i-i',j-j',k-k'} \, \rho_{i',j',k'} \end{split}$$

Performance time

Poisson solver	<i>N</i> =28	<i>N</i> =32
FFT		267 s
FFT, integrated Green's function		312 s
MG, equi. (initial guess = 0)	247 s	259 s
MG, equi. (initial guess ≠0)	237 s	240 s
MG, non-equi. (initial guess = 0)	254 s	261 s
MG, non-equi. (initial guess ≠0)	243 s	241 s
PCG, equi. (initial guess = 0)	261 s	280 s
PCG, equi. (initial guess $\neq 0$)	246 s	235 s
PCG, non-equi. (initial guess = 0)	266 s	296 s
PCG, non-equi. (initial guess ≠0)	235 s	235 s

- Algorithms for 3D space charge calculations
- Properties of FFT and iterative Poisson solvers
- Optimal iterative Poisson solver: multigrid technique
- Numerical investigations:
 - Multigrid performance
 - ASTRA: Tracking example with FFT and multigrid
 - Numerical studies of cylindrical shaped bunches

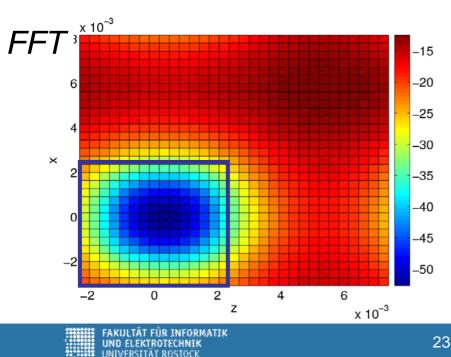


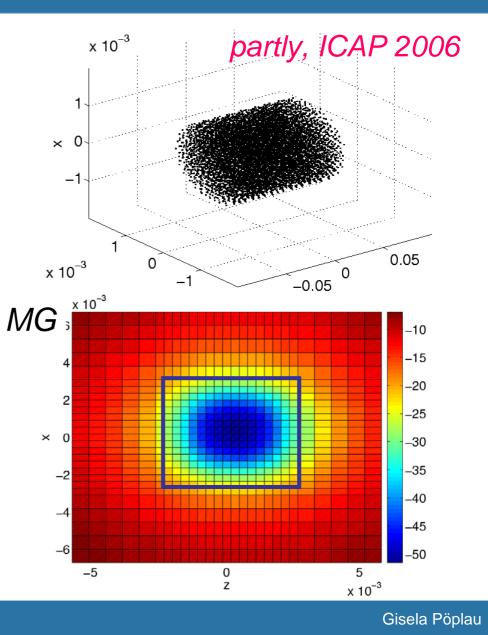


Numerical Investigations

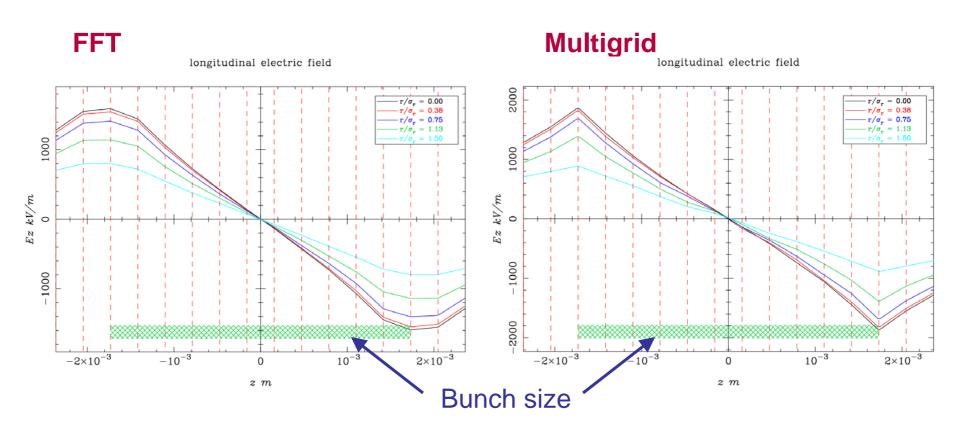
Parameters for simulations

- Cylindrical bunches
- Uniform partical distribution
- 20,000 macro particles
- Charge -1 nC
- Aspect ratio of the bunch σ_x/σ_z





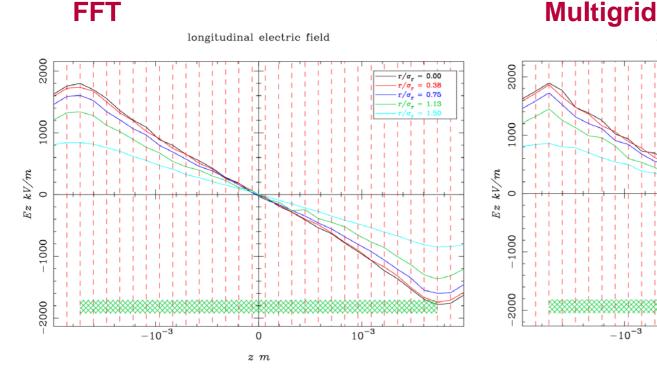
Bunch with Aspect Ratio 1



- # of grid points: 32x32x32
- Field at the edges of the bunch is **not** approximated correctly

• # of grid points: 28x28x28

Bunch with Aspect Ratio 1



- # of grid points: 64x64x64
- Field at the edges of the bunch is better approximated

• # of grid points: 60x60x60

z m

longitudinal electric field

 Resolution too high: more particles required for smoother fields $r/\sigma_{-} = 0.00$

 $r/\sigma = 0.75$

 10^{-3}

Bunch with Aspect Ratio 1

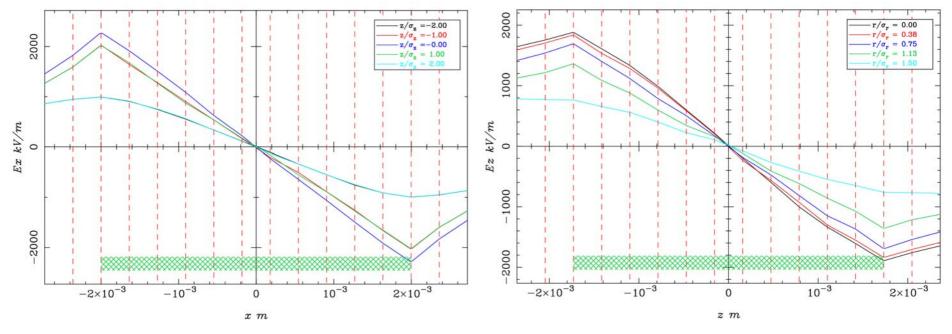
FFT with integrated Green's function

transversal

longitudinal

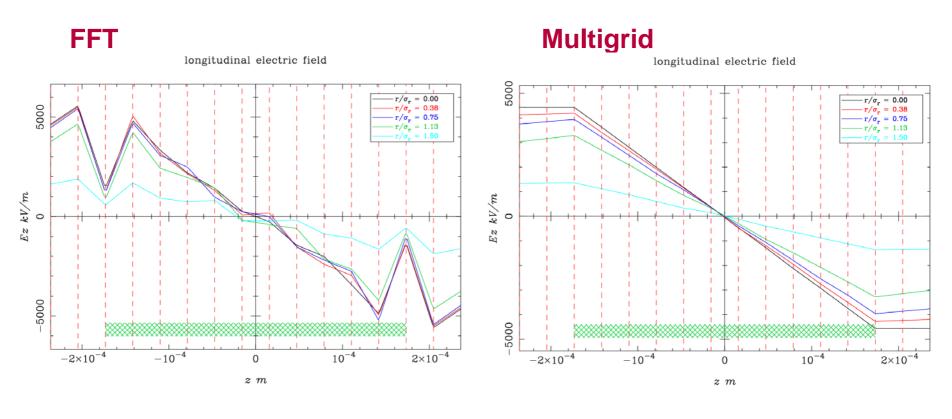
transverse electric field

longitudinal electric field



- # of grid points: 32x32x32
- Field at the edges of the bunch is approximated correctly

Short Bunch with Aspect Ratio 10



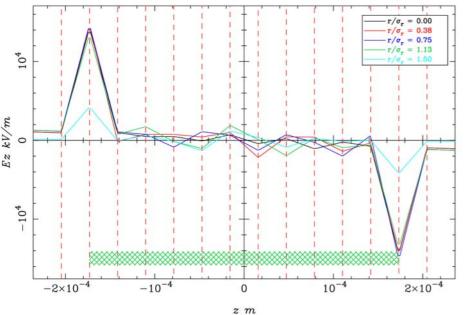
• # of grid points: 32x32x32

- # of grid points: 32x32x32
- Field at the edges of the bunch is **not** approximated correctly

Short Bunch with Aspect Ratio 10

FFT with integrated Green's function

longitudinal electric field



- # of grid points: 32x32x32
- Field of the bunch is **not** approximated correctly

 $= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_$

• # of grid points: 32x32x32

longitudinal electric field

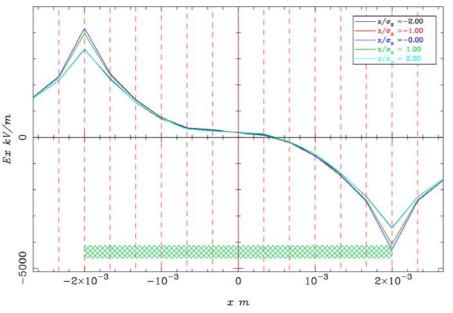
Multigrid

Short Bunch with Aspect Ratio 10

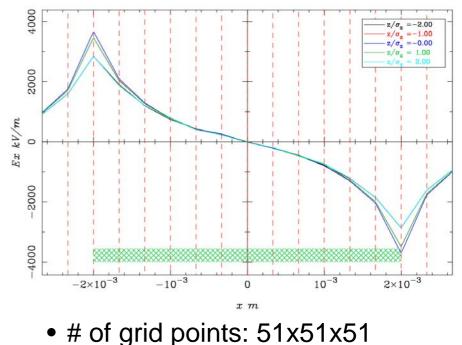
Multigrid, open boundaries "small" computational domain

Multigrid, Dirichlet boundaries "large" computational domain

transverse electric field



transverse electric field



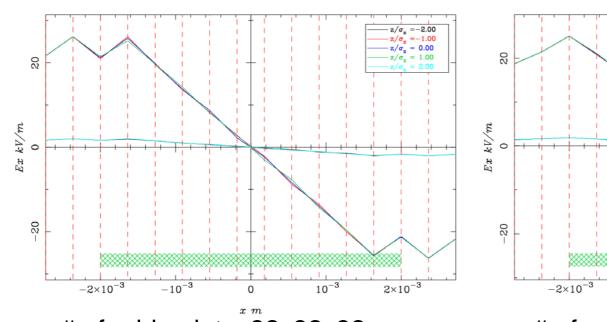
- # of grid points: 33x33x33
- Field of the bunch around the center is **not** approximated correctly

Long Bunch with Aspect Ratio 0.01

FFT

Multigrid FFT with integrated Green's function

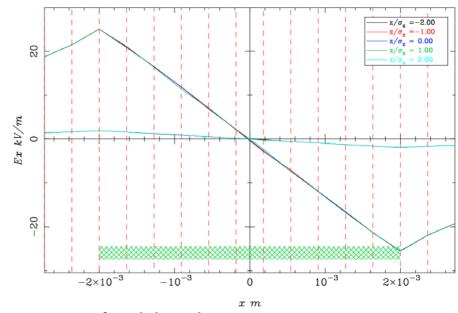
transverse electric field



transverse electric field

• # of grid points: 32x32x32

 Transverse field at the edges of the bunch is **not** approximated correctly



• # of grid points: 32x32x32

Summary and Projects

- MG Poisson solvers are much more flexible than FFT Poisson solvers (boundary, discretization)
- MG Poisson solvers enable a better approximation
- Software package MOEVE 2.0 (2.1)
- Part of the tracking codes ASTRA and GPT 2.7
- Projects in Rostock:
 - Simulation of e-clouds (Aleksandar)
 - Adaptive multigrid discretizations for charged particle bunches (DFG-Project, Christian Bahls)

