Longitudinal stacking and electron cooling of ion beams in the ESR as a proof of principle for FAIR

C. Dimopoulou

B. Franzke, T. Katayama, D. Möhl, G. Schreiber, M. Steck

DESY Seminar, 20 November 2007

Overview

Motivation: Stacking of Rare Isotopes in the NESR @FAIR

- Cooling-stacking experiments in the ESR:
- Long. accumulation with Barrier Buckets
- Long. accumulation with the sinusoidal RF at h=1

Conclusions & Outlook

FAIR Facility for RIBs and pbars

The FAIR 13 Tm storage rings

NESR Operation with ions

NESR Operation with antiprotons

momentum acceptance (ϵ_{H} =0): ±2.1 % transverse accep. H/V ($\Delta p/p$ = ±1.5%): 160 / 50 mm mrad

Antiprotons

deceleration $3000 \rightarrow 800 \rightarrow 30 \text{ MeV}$ electron cooling at 800 MeV

The NESR Electron Cooler

design by BINP, Novosibirsk

Issues: • high voltage up to 500 kV

- fast ramping, up to 250 kV/s
- magnetic field quality

energy	2 - 450 keV			
max. current	2 A			
cathode radius	1 cm			
beam radius	0.5-1.4 cm			
hollow cathode option				

magnetic field	
gun	up to 0.4 T
cool. sect.	up to 0.2 T
straightness	≤ 5×10 ⁻⁵
adiabatic expan	sion option

Principle of electron cooling

Cooling rate

$$\frac{1}{\tau_{cool}} \propto \frac{q^2}{A} \cdot \frac{n_e L_c}{\beta^3 \gamma^5 \theta_{rel}^3}$$

Storage ring with beam cooling

Electron cooling

- Increase phase space density
- Accumulation of ions

Compensate diffusion(phase space growth)during deceleration

Counteract heating effects i.e. in targets

Increase the intensity of RIBs for internal experiments; in particular to reach high luminosity in the e-ion collider mode.

How?

Longitudinal beam compression at injection energy (i.e. at 100-740 MeV/u) supported by electron cooling

i) using Barrier Bucket pulsesi) by multiple injections on the unstable fixed point of the sinusoidal RF bucket at h=1

Goal

Stacking cycle time (between 2 successive injections) < 2 sec:
Imitations by RIB lifetimes
profit from SIS100 cycle time of 1.5 sec

Longitudinal stacking with Barrier Buckets (Simulations by T. Katayama)

Longitudinal stacking with Barrier Buckets (Simulations by T. Katayama)

Longitudinal stacking with Barrier Buckets (Simulations by T. Katayama)

Longitudinal stacking with Barrier Buckets (Simulations by T. Katayama)

Longitudinal stacking with Barrier Buckets (Simulations by T. Katayama)

Longitudinal stacking with Barrier Buckets (Simulations by T. Katayama)

Stacking by multiple injections on the unstable fixed point of the RF bucket at h=1 (D. Möhl)

Procedure:

- 1. Increase RF voltage adiabatically to bunch the stack over a small part of the ring.
- 2. Inject new batch on the free part of the circumference i.e. on the unstable fixed point.
- 3. Decrease RF (non-adiabatically so as not to dilute the new bunch) to debunch and merge new batch and stack.

Proof of principle by experiments in the ESR

The existing GSI accelerator complex

Proof of principle by experiments in the ESR

⁴⁰Ar¹⁸⁺ at Ec=65.3 MeV/u (β=0.356, γ=1.07, T_{rev} ≈1 μs)

Successive injections of bunches from SIS ($\sim 10^7$ ions, ~ 300 ns long) to accumulate up to a few times 10^8 ions in ESR.

For injected beam: e-cooling time to equilibrium ~ 13 s at I_e =0.1 A (// from Schottky pickup; hor. from rest gas monitor)

Tested both schemes under same conditions !

Stacked beam in ESR

In the cooling section: 2 main competing processes

Cooling rate $\frac{1}{\tau_{cool}} \propto \frac{q^2}{A} \cdot \frac{n_e L_c}{\beta^3 \gamma^5 \theta_{rel}^3}$

Equilibrium

$$\frac{1}{\tau_{cool}} = \frac{1}{\tau_{IBS}}$$

IBS heating rate

$$\frac{1}{\tau_{\rm IBS}} \propto \frac{q^4}{A^2} \cdot \frac{N_{\rm i}}{\beta^3 \gamma^4 \epsilon_{\rm H} \epsilon_{\rm V} \left(\Delta p/p\right)}$$

Stacked beam in ESR

Stacked coasting beam at equilibrium between cooling & IBS:

N_i= 10⁸ (I_{ESR}= 0.3 mA), Ie=0.1 A \rightarrow ($\Delta p/p$)_{equil} = 1 10⁻⁴, $\epsilon_{h,equil} \approx$ 1 mm mrad

 Scaling laws:
 $(\Delta p/p)$ equil
 \sim $(N_i/B)^{0.36}$ Ie^{-0.3}
 But

 $(\epsilon_{h,v})$ equil
 \sim $(N_i/B)^{0.41}$ Ie^{-0.3}
 B=

Bunching factor: B=T_{bunch(stack)}/T_{rev}

Beam signal in the ESR PU

(1 frame/ 200 revolutions for a total time of 1.46 s)

Stacking with Barrier Buckets: Timing

 V_{BB} =120 V, T_{B} =200 ns (f_{rf}=5 MHz), I_e=0.1 A, stacking cycle=9 s

Stacking with Barrier Buckets: Timing

ESR Stack with freshly injected bunch in the Barrier Bucket gap

Beam accumulation measured by the ESR current transformer

 V_{BB} =120 V, T_{B} =200 ns (f_{rf}=5 MHz), I_e=0.1 A, stacking cycle=9 s

What is the $\Delta p/p$ of the stack at saturation intensity? \rightarrow Results of BB stacking-cooling simulations by T. Katayama

→Estimation assuming equilibrium between cooling and IBS in saturated stack:

 $\Delta p/p \sim (I_{ESR,sat} / B)^{0.36} I_e^{-0.3}$,

Qualitative information: relative phase of stacked bunch, new bunch & kicker pulse w.r.t. separatrix

Beam accumulation measured with the ESR current transformer

 V_{RF} =120 V, f_{rf}=1 MHz, I_e=0.1 A

Accumulation efficiency 2.0 current increase/ injected current 1.0 Stacked ESR current (mA) (injected current varied within 30%) (injected current varied within 30%) 0.8 1.5 0.6 1.0 0.4 0.2 0.5 0.0 ESR 0.0 -0.2 30 10 20 40 50 60 70 80 90 100 0 20 30 10 40 50 60 80 90 0 70 100 t (s) t (s)

Stack losses after every injection

Problems:

stacking cycle=9 s

- Imperfect synchronisation RF-kicker, variable kicker pulse length
- Adiabatic bunching (~0.25 s) fast w.r.t. e-cooling

Beam accumulation measured with the ESR current transformer

V_{RF}=120 V, f_{rf}=1 MHz, I_e=0.1 A

The $\Delta p/p$ of the stack at saturation intensity is given from the RF bucket formula if we measure with the pickup the corresponding bunch length! $\frac{\sigma_t}{T_{rev}} = \frac{\sigma_s}{C} = \sqrt{\frac{\beta^2 \eta E_{0,tot}}{2\pi \ Qe \ hV_{rf}}} \frac{\Delta p}{p}$

Stacked bunch length at saturation measured with the pickup, for different RF voltages and electron currents.

Vrf (V)	I _{ESR} at saturation (mA)	bunch length of stack (FWHM)	Δp/p of stack (FWHM)	Bucket height +/- δ _B	B=T _{stack} /T _{rev}
120	1.2-1.4	160 ns	3.10 10-4	6.28 10-4	0.157
60	0.9-1.0	175 ns	2.40 10-4	4.44 10-4	0.172
30	0.7	200 ns	1.94 10-4	3.14 10-4	0.197

At saturation, the stacked bunch occupied ~20% of the ring and filled 50-60% of the momentum acceptance of the RF bucket at h=1, for all applied voltages.

> Within the pickup resolution (~10 ns): bunch length independent of I_e .

Conclusions

- Procedure and results essentially understood.
- Accumulated intensity limited by (i) the available RF voltage i.e. bucket area and (ii) by the electron cooling strength.
- Accumulation speed limited mainly by electron cooling strength.
- Long kicker pulse w.r.t. revolution period restricted flexibility in stack/bunch/BB length manipulations.

Conclusions (continued)

 Not optimal h=1 stacking, dedicated experiment planned ("cleaner" RF & kicker conditions, long kicker pulse for high injection efficiency, longer bunching & stacking cycles to allow better cooling, synchronisation RF-cooler during bunching)

• For the same Vrf, stacking at h=1 offers $\sqrt{\frac{Trev}{T_B}}$ confinement strength than stacking with BB.

larger

• Easier to deduce stack parameters for stacking at h=1, dedicated simulations necessary for stacking with BB.

Outlook for the NESR

• The exp. results in the ESR confirm the requirements for the NESR systems:

- Faster cooling foreseen (higher & variable electron beam density)
 stacking cycles below 2 s (RIBs lifetime, SIS100 cycle)
- Barrier Bucket RF system with max. voltage of +/-2 kV at 5 MHz
- Short adjustable (~100 ns) injection kicker flat top and rise/fall times essential for stacking
- Appropriate & sufficient beam diagnostics

NESR Civil Construction Planning

Lower (ring) level

Upper level

rf, diagnostics, vacuum, controls power converters, common systems
Integration of technical components and experiments underway

References

•C. Dimopoulou, K. Beckert, P. Beller, A. Dolinskii, U. Laier, F. Nolden, G. Schreiber, M. Steck, J. Yang, Phys. Rev. ST-AB 10 (020107) 2007.

•FAIR Baseline Technical Report, <u>http://www.gsi.de/fair/reports/</u>.

- C. Dimopoulou et al., Proccedings of COOL07
- T. Katayama et al., Proccedings of COOL07, (to be published on JACoW : <u>http://accelconf.web.cern.ch</u>)

•M. Steck et al., Proceedings of EPAC 06, published on JACoW

•V.V. Parkhomchuk et al., GSI-Acc-Report-2005-04-001