Experiments on deflection of charged particles using silicon crystals at REFER ring (Hiroshima University) and Proton Synchrotron (KEK)

S. Sawada
KEK - High Energy Accelerator Research Organization
T. Takahashi, I. Endo, M. Iinuma, H. Sato, S. Strokov, K. Ueda
Graduate School of Advanced Sciences of Matter, Hiroshima University
H. Kuroiwa, T. Ohnishi
Venture Business Laboratory, Hiroshima University
V. Biryukov, Yu. Chesnokov
Institute for High Energy Physics, Russia

Contents

1. Introduction to the channeling effect
2. Motivation
3. Experiment on electron beam deflection (REFER, Hiroshima University)
4. Experiment on proton beam deflection (Proton Synchrotron, KEK)

5. Conclusion

Introduction

(channeling effect)

θ - angle of incident particle to the crystallographic plane

$\theta<$ Lindhard angle \rightarrow channeling effect
$\theta>$ Lindhard angle \rightarrow no channeling effect

Motivation

Application to deflection of high energy (50 GeV) and high intensity proton beam at J-PARC (Japan Proton Accelerator Research Complex):

- beam splitting in a slow-extraction beam,
- beam collimator,
- slow beam extraction from the synchrotron in the future.

Collimation of the ultra-low emittance beam at ILC (International Linear Collider).

Beam extraction from the REFER ring is within the scope.
Beam diagnosis by channeling effect (beam divergence and profile).

REFER ring @ Hiroshima University

- REFER (Relativistic Electron Facility for Education and Research)

REFER ring @ Hiroshima University

Experimental setup

Extraction line

Extraction line

Setup

Schematic view of the setup

phosphor

Experiment: beam divergence

- Beam divergence vs. QM3 current
(\leftarrow measured beam profile and optics calculation)

- Vertical angle dependence of the profile is the point.
- Lindhard angle for <100> axis of Si : 0.7 mr
- Beam divergence > Lindhard angle

Results: Beam Profiles

QM3: 2.0A $\theta=0, \phi=-1.5 \mathrm{mr}$ Beam divergence: 3.0 mr

QM3: 2.6A $\theta=0, \phi=-1.5 \mathrm{mr}$ Beam divergence: 5.2 mr

Analysis

- Beam divergence (vertical): 3.0 mr QM3: 2.0 A

Beam center \equiv weighted average in 2σ region

Results

- Beam divergence (vertical) : 3.0 mr $\theta=0 \mathrm{mr}$ (QM3: 2.0 A)

Deflection angle \leftarrow change of beam center +2.34 m

- Beam divergence $=3.8 \mathrm{mr} \quad \theta=0 \mathrm{mr}(\mathrm{QM} 3: 2.2 \mathrm{~A})$

- Beam divergence : 5.2 mr $\theta=0 \mathrm{mr}$ (QM3:2.6 A)

Results: deflection vs. beam divergence

- Deflection vs. beam divergence

The magnitude of the deflection, Δ, was determined by fitting the plot with $1^{\text {st }}$ derivative of Gaussian function

Larger beam divergence \rightarrow Smaller deflection

Simulation

Lindhard string continuous potential

$$
U=\frac{2 Z e^{2}}{d} \ln \sqrt{1+\frac{3 R^{2}}{\rho^{2}}} \quad \begin{aligned}
& R: \text { Thomas-Fermi radius } \\
& \rho: \text { Distance from }<100>\text { axis } \\
& d: \text { lattice constant in }<100>\text { axis } \\
& (5.43 A ̊ \text { for } \mathrm{Si})
\end{aligned}
$$

Conditions for simulation

$4^{\text {th }}$ order of Runge-Kutta method
Without consideration of multiple scattering and channeling radiation
Energy of electrons : 150 MeV
Thickness of the crystal : $16 \mu \mathrm{~m}$

Simulation: trajectory

- Trajectory of an electron

Simulation

- Preliminary results

Simulation

- Comparison with experimental data
- Beam divergence: 3.0 mr (QM3:2.0 A)

The tendency of the deflection as a function of the vertical direction of the crystal (ϕ) is same. But, in quantitative comparison, the peak-to-peak difference of the deflection angle of the measurement is about 0.4 mr , while it's around 0.04 mr for the simulation.

Simulation

- Comparison with experimental data
- Beam divergence : 5.2 mr (QM3:2.6 A)

Experimental data agree with simulation qualitatively.
Study with more realistic beam profiles etc. is underway.

Summary

- Performed experiment on beam deflection at REFER with the150-MeV electron beam.
- Systematic investigation of the beam deflection as a function of the beam divergence.
- Preliminary comparison with simulation:
- Qualitative agreements
- Quantitative comparison ... being studied

Prospect

- Experiment at KEK-ATF (Accelerator Test Facility)
$-E=1.28 \mathrm{GeV}$
- Normalized emittace: $\varepsilon_{\mathrm{x}}=3.4 \times 10^{-6} \mathrm{~m}, \varepsilon_{\mathrm{y}}=4.5 \times 10^{-8} \mathrm{~m}$
- Just a similar experiment at ATF as the REFER experiment
- See channeling effects with the super-low emittance beam.

Experiment at KEK-PS

Experimental setup

Crystal, proton beam

Parameters of crystal

Material: \quad Silicon	
Size: $\quad 3 \times 0.3 \times 10 \mathrm{~mm}$	
Bending angle:	$\sim 32.6 \mathrm{mrad}$
Plane:	(111)
Lindhard angle:	0.066 mrad

Parameters of the proton beam

Schematic drawing of the experiment

Typical pictures

> image after background subtraction
raw image

10 July, 2006

angle between crystal and beam axis,
(mrad)
Such dependence agrees with estimations

10 July, 2006
 angle between crystal and beam axis,
(mrad)

10^{12} protons $\rightarrow \sim 10^{7}$ deflected protons

Crystal efficiency

$\begin{aligned} N \text { deflected }= & \begin{array}{l} \text { Crystal Efficiency } x \\ \\ \\ \text { Angle Efficiency } \times \\ \\ \end{array} \begin{array}{r} \text { N incident upon } \\ \text { the crystal. } \end{array} \end{aligned}$	Incident particles within critical (Lindhard) angle to the crystallographic plane. At the beam divergence $<5 \mathrm{mrad}$ and Lindhard angle 0.066 mrad , angle efficiency is $>1 \%$
Crystal Efficiency could be:	
$26 \% \rightarrow \text { at } 1 \mathrm{mrad}$	N deflected $=4 \times 10^{7}$ protons
$13 \% \rightarrow$ at 0.5 mrad	
10 July, 2006 Sergey Strokov/ DESY,	burg 32

Simulation

Simulation

> | N deflected $=$ | $\underline{\text { Crystal Efficiency } x}$ |
| ---: | :--- |
| | $\begin{array}{r}\text { Angle Efficiency } x \\ \\ \end{array}$ |
| $\begin{array}{l}\text { N incident upon } \\ \text { the crystal. }\end{array}$ | |

Crystal Efficiency is 15\%

Simulation vs. Experimental data

Position of the deflected beam - experimental data
at the distance 145 cm from the crystal, (mm)
-_ simulation

Simulation vs. Experimental data

Crystal efficiency

At the beam divergence $0.3-0.5 \mathrm{mrad}$ crystal efficiency in experiment was 8-13\%

From the simulation it is 15%

Summary

- Experiment on the deflection of proton beam by the bent crystal was successfully done.
- The crystal shows good deflection efficiency which is $8-13 \%$.
- Performed Monte-Carlo simulation proves the experimental data

Future projects

Next experiment on the channeling of ultra-low emittance electron beam will be performed at KEK-ATF (Autumn, 2006).

Participation at the experiment on proton collimation at the Fermilab.

Experiment at the REFER ring, Hiroshima University with the 150 MeV electron beam (channeling radiation)

Application for the J-PARC

