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Introduction
• FLASH
• Higher Order Modes in Cavities
• HOMs as Diagnostics
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FLASH Facility (formerly TTF2)

• 1.3 GHz superconducting linac
– 5 current accelerating modules, with a further two planned for 

installation.
– Typical energy of 400 – 750 MeV.

• Bunch compressors create a ~10 fs spike in the charge 
profile.
– This generates intense VUV light when passed through the 

undulator section (SASE).
• Used for ILC and XFEL studies, as well as VUV-FEL 

generation for users.
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Higher Order Modes in Cavities

• In addition to the fundamental accelerating 
mode, cavities can support a spectrum of 
higher order modes.

• Traditionally they are seen as “bad”.
– Beam breakup (BBU), HOM heating, …

• Here we investigate their usefulness,
– Beam diagnostics
– Cavity alignment
– Cavity diagnostics
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TESLA Cavities

• Nine cell superconducting cavities.
• 1.3 GHz standing wave used for acceleration.
• Gradient of up to 35 MV/m.

– Addition of piezo-tuners and improvement of manufacturing technique 
intended to make 35 MV/m gradient easier to achieve.

• HOM couplers with a tunable notch filter to reject fundamental.
– One upstream and one downstream, separated by 115degrees 

azimuthally.
– Couple electrically and magnetically to the cavity fields.



7/43

Higher Order Modes
• The 9 cells of the cavities leads to 9 different longitudinal 

distributions with similar radial field geometry
– i.e. Different passbands with 9 modes each.

• Monopole modes,
– First monopole passband is TM-like, and contains the 1.3 GHz 

accelerating mode.
– First higher order monopole band lies between 2.38 – 2.46 GHz.

• Dipole modes,
– TE-like between 1.6 – 1.8 GHz.
– TM-like between 1.8 – 1.9 GHz.

• Quadrupole modes,
– First quadrupole band is at ~2.3 GHz.

• Modes synchronous with the beam (i.e. phase velocity = c) 
have strongest coupling to the beam,
– Indicated by a large R/Q.
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HOMs as Diagnostics

• No need to install new beamline hardware
– HOM power must be coupled out of the 

cavities to prevent BBU, etc.
– Therefore beamline and cryogenic hardware 

already exists.
• Even the cables existed at FLASH!

• Large proportion of linac length occupied 
by structures.



9/43

• Beam Position Monitoring
– Dipole mode amplitude is a linear function of the bunch charge 

and transverse offset.
– Exist in two polarisations corresponding to two transverse 

orthogonal directions.
• Not necessarily coincident with horizontal and vertical directions due 

to perturbations from cavity imperfections and the couplers.
• Problem – polarisations not necessarily degenerate in frequency.

– Frequency splitting <1 MHz (of same size as the resonance width).

• Beam Phase Monitoring
– Power leakage of the 1.3 GHz accelerating mode through the 

HOM coupler is approximately the same amplitude as the HOM 
signals.

• i.e. Accelerating RF and beam induced monopole modes exist on 
same cables.

– Compare phase of 1.3 GHz and a monopole HOM.

HOMs as a Beam Diagnostic
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HOMs as a Cavity Diagnostic
• Analyse the response of a dipole mode to 

different beam trajectories.
– Can find the trajectory corresponding to the lowest 

power output from that mode.
– This is the centre of that dipole mode in that cavity.

• Measure the axis of a dipole mode for many 
cavities within a structure.
– Can compare the centre of a particular mode in many 

cavities.
– Gives in situ alignment data on the internals of the 

accelerating module.
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• Many modes in the spectrum.
– Monopole, dipole, quadrupole, etc.
– Frequency, Q, R/Q, etc. dependent on cavity 

construction.
• HOM spectrum directly influenced by the 

internal cavity shape.
– The low frequency HOMs studied here are not 

strongly affected by the iris positions.
– Effect of couplers can offset the modes from the 

cavity centre.

HOMs as a Cavity Diagnostic



Measuring HOMs

• Broadband
• Narrowband



Broadband Measurements
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Monopole Mode Measurements

• Digitise the HOM signal with a broadband scope,
– 5 GS/s, 2.5 GHz

• Can measure phase of beam induced monopole lines.
• HOM coupler allows a small amount of the fundamental to leak through.

– Accelerating RF and beam induced HOMs exist on same cable.
– No cable expansion issues.
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• Measurement of the 1.3 GHz phase
– 5 degree phase change command from the RF control system.

• Noise is 0.08 degrees at 1.3 GHz (~170 fs)
– Estimated by comparing the measurement from two couplers from the same 

cavity.
• When the beam phase is compared to the RF phase of two cavities on the 

same klystron, an RMS of 0.3 degrees is measured.
– Microphonics?
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Future

• Many modes, with many free parameters
– Potentially a lot of information in the HOM spectrum.
– Simulate and compare with measurements

• Perfect cavities.
• Perturbations in cavity shape, couplers, …

– Attempt to measure cavity shape from HOM spectrum.
• More exotic effects

– Elliptical modes, corkscrew modes, …
– Implications for beam dynamics, and cavity construction.



Narrow band Measurements
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Dipole Mode Response

Tilted trajectory

Tilted bunch

• Mode excited by bunch 
offset from mode centre.

• Amplitude goes with offset

• Phase changes going 
through zero Information on tilt of 

trajectory/bunch.
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Dipole Mode Measurement
• Simulations show that the 6th mode in the 1st passband has 

a strong coupling to the beam,
– R/Q = ~5.5 Ohms/cm^2
– Frequency = ~1.7 GHz

• Design narrow band electronics to observe this mode only.
– Filter around 1.7 GHz (20 MHz bandwidth)
– Mix with 1.679 GHz LO
– Digitise at 108 MHz

• 1.697 GHz tone added before mixer to provide a constant 
amplitude, 18 MHz, calibration signal.
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Standard Cavity BPM

Beam pipe

Couplers
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Standard Cavity BPM
• Two coupling ports

– Each sensitive to orthogonal signals (x or y)
• Output is decaying sine wave
• Analysis

– Fit to signal with known frequency and Q.
• Determine bunch offset and tilt from fitted amplitude and 

phase.

– Digital Down Conversion (DDC)
• Multiply by sine and cosine-like signals.
• Digitally filter to leave only low frequency information
• Amplitude of I and Q components gives phase and amplitude 

of original signal.
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TTF RF Cavities as BPMs

• Couplers are not orthogonal.
– Separated by 115 degrees azimuthally.

• Instead, use the fact that each dipole mode 
exists in two orthogonal polarisations.
– The axis of these polarisations not necessarily 

coincident with x,y axis.
– Must look at signals from both couplers to observe 

both polarisations.
– Polarisation frequencies may be different.

• Signal no longer simple decaying sine wave as the 
polarisations will beat against each other.
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Example Waveform
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Analysis

• Standard cavity BPM analysis techniques are problematic due to 
varying degrees of frequency degeneracy in the cavities.

• Simple to determine amplitude and phase if the frequency split is greater than the 
line width, or if they are identical.

• Non-trivial when the splitting is on the same scale as the width.
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Alternative
• Rely on the fact that the four degrees of freedom (x, x’, y, 

and y’) generate four orthogonal signals.
• Move the beam through a wide range of phase space, 

and analyse output.
– Try to find four orthogonal modes corresponding to the four 

degrees of freedom.
– With a large dataset, this could be done in a “least squares” way.

• Singular Value Decomposition (SVD) finds the 
predominant modes in a dataset.
– Therefore the top 4 SVD modes should be linear combinations of 

the x, x’, y, y’ modes.
– Can find the amplitude of each of the SVD modes in each output 

pulse.
– Then find the correlation between these amplitudes and the 

beam position.
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Analysis – Singular Value 
Decomposition

• SVD decomposes a matrix, X, into the product of three 
matrices, U, S, and V.
– U and V are unitary.
– S is diagonal.

• It finds the “normal eigenvectors” of the dataset.
– i.e. “modes” whose amplitude changes independently of each 

other.
– These may be linear combinations of the expected modes.

• Use a large number of pulses for each cavity.
– Make sure the beam was moved a significant amount in x, x’, y, 

and y’.
• Does not need a priori knowledge of resonance 

frequency, Q, etc.
– Similar to Model Independent Analysis.
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Method

• Develop model for the machine
• Steer beam using two correctors upstream of the 

accelerating module.
– Try to choose a large range of values in (x,x’) and 

(y,y’) phase space.
• Record the response of the mixed-down dipole 

mode at each steerer setting.

BPMs accelerating module

1 8

HOM electronicssteering magnets

electron bunch
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Data preparation
• Cut saturated pulses.
• Cut on low charge pulses 

(using toroid information).
• Cut on excessive (>1 cm) 

beam motion in BPMs.
• Cut pulses that contain BPM 

failures (i.e. toroids show 
sufficient charge, but BPM 
readout failed).

• Combine output of both couplers into one waveform.

• Start of pulse will have transient effects, so cut this.

• Make (n x j) matrix. (I’ll call this matrix “X”)

• n = number of pulses (≤250)

• j = samples in each waveform (~3500)
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• Using SVD on the (n x j) cavity output matrix, X, produces three matrices.
– U (n x j), S (j x j, diagonal), and V (j x j)

• V contains j modes.
– These are the orthonormal eigenvectors.
– “Intuitive” modes will be linear combinations of these.

• The diagonal elements of S are the eigenvalues of the eigenvectors.
– i.e. the amount with which the associated eigenvector contributes to the 

average coupler output.
– It can be shown that the largest eigenvalues found by SVD are the largest 

possible eigenvalues.
• U gives the amplitude of each eigenvector for each beam pulse.

Using SVD (1)
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Using SVD (2)
• Performing full SVD analysis on multiple ~100 x 3500 

matrices is very time consuming.
• Instead find only first k eigenvectors (k ~ 4 – 8).

– i.e. k largest eigenvalues
– CPU time is dominated by the SVD, so this greatly reduces the 

time taken for the calculation.
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Example modes (acc5, cav5)
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Calibrating HOMs (1)
• Steer beam in x, x’, y, and y’.

– Generate multi-knobs for this purpose.

• Normalise by charge read from toroids.
• Extract eigenvectors using SVD.
• Find amplitude of each eigenvector for each beam pulse.

– Dot product of k eigenvectors with n beam pulses.
– Results in k x n matrix, A.
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Calibrating HOMs (2)

• Use Matlab “slash” operator to regress the mode 
amplitudes, A, against beam position & angle.
– Position/angle interpolated from adjacent BPMs.

• The slash operator performs a least-squares fit to the data
– Results in a (4 x (k+1)) calibration matrix, M.
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Intuitive modes?
• This calibration matrix, M, shows how much of each SVD mode 

contributes to the modes corresponding to x, x’, y, y’.
• Therefore, can sum the SVD modes to find the intuitive modes.

– Lack of calibration tone in the reconstructed modes, as expected.
– Beating indicates presence of two frequencies, i.e. actual cavity modes 

are rotated with respect to x and y.
– Could rotate these modes to find orientation of polarisation vectors in the 

cavity…
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• Calibrate against position and angle in both 
planes.
– Straight line interpolation between BPMs.

• Incorrect for ACC1 due to significant energy gain…

– Angle calibrated against beam trajectory.
• Bunch tilt (small) will appear as the mean of the residuals.

• Use “figure of merit” to determine quality of 
dataset.
–
– Turns out best dataset is achieved by calibrating on 

jitter! (Have yet to fully analyse data from this run.)

Resolution

yxrmsrms YX σσ ××
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250 point run – no steering
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Predict position at one cavity from 
positions at adjacent cavities

X resolution ~ 6.1µm Y resolution ~ 3.3 µm
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Theoretical Resolution

• Corresponds to a limit of ~165 nm
– Included 10 dB cable losses, 6.5 dB noise figure, and 10 dB 

attenuator in electronics.
• Need good charge measurement to perform 

normalisation.
– 0.1% stability of toroids, to achieve 1 um at 1 mm offset.
– Not the case with the FLASH toroids.

• LO has a measured phase noise of ~1 degree RMS.
– This will mix angle and position, and will degrade resolution.
– LO and calibration tone have a similar circuit, and cal. tone has 

much better phase noise.
• Therefore, should be simple to improve.
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Cavity centre determination



41/43

• ACC4 alignment:
– X: 105 um +- 37 um
– Y: 215 um +- 24 um

• ACC5 alignment:
– X: 241 um +- 9 um
– Y: 203 um +- 5 um

• This calculation was performed using x and y 
offset data only.  No angle information used.
– It is necessary to use all 4 degrees of freedom.
– Not enough of the x and y angle space was covered 

in previous data runs, resulting in noisy data.

Cavity centre determination
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Illustration of phase space
Calculated 
centre*

Measured 
data points.

Random points 
filling phase 
space x

Random points in “Minimum 
Volume Enclosing Ellipse” .
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Summary
• HOMs are useful for diagnostic purposes.

– Beamline hardware already exists.
– Large proportion of linac occupied with structures.

• Cavity/Structure diagnostics.
– Alignment of cavities within supercooled structure.
– Possibility of exploring inner cavity geometry by examining HOM 

output and comparing to simulation.
• Beam diagnostics.

– Accelerating RF and beam induced monopole HOM exist on same 
cable.

• No effect from thermal expansion of cables.
• Can find beam phase with respect to machine RF.

– Dipole modes respond strongly to beam position.
• Can use these to measure transverse beam position.
• ~2 um demonstrated, (~165 nm thermal limit)
• Large proportion of FLASH and ILC occupied by cavities, therefore this 

results in many extra high resolution BPMs for these machines.


