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Dispersive L attice Functions

T; = Z A;,glxk (83)
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Now, just for fun, let us suppose that the third plane is frozen.
Then the average of Eq. (83), instead of being zero, is given by
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We then send back this average in the original space using A:

<$a>1,2 = Z {Aag,Agkl -+ AaGAﬁ_kl} Tk (85)
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One notices that the lattice functions in Eq. (85) are contrac-
tions of A with its inverse. As we said these objects are invari-
ants even in the nonsymplectic case. In the symplectic case, by
using the symplectic condition, we can get rid of either A or
A~L. Now consider the coefficient of x5 which we will assume
is the energy variable in the longitudinal plane:

d<xa>1,2
d375

AusAsd + AggAgy
= AusAs6 — AasAse (86)

From Eq. (86), we see that scalar product invariants between A
and its inverse correspond to cross product invariants of A with
itself. These cross product invariants do not enter naturally
in any perturbative calculation of a system undergoing pseudo-
harmonic oscillation. However if one plane is slowly frozen com-
pared to the others, for example the longitudinal plane, these
invariant will tend towards dispersive quantities of the constant
energy system. For example, the dispersion 7) is given by the
formula

Na = AasAgs + AgsAgs fora=1,4 (87)



Non-Symplectic Interpretation
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Pure Mathematical Theory
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Connection to Ripken

In the notation of reference [3], the stroboscopic dispersive av-
erages are all of the form

"7;'& = Ag 2145, it Ak 0i A j (88)

and all the standard lattice functions are within a factor of
(—1)k given by

/ ;k = {431 jAk 20 — A;,;'lek 21 (89)
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Beam Envelope
Ykt = (TrTi)

o= MM + AY

— — -
S = ATA+AS
M =CAC™t and ¥ = CXC
A = diag (exp (—a1 +ip1) ,exp (—ay —ipy), -+, exp (—asz +iu3),exp (—az — iu3))

(Tok—1T2k) = T3 + Di.



From Envelope to Chao to Sans

Thus we can immediately solve for the equilibrium phasors.
Consider first the terms (Tor_1Tok) = @% —I—ﬁi where £ =1, 2, 3:

>OC> o EQk—l k

1 —exp (—2az) (105)

(Tok—1Tak

There are three terms of the type of Eq. (105). They are the so-
called equilibrium emittances. If we look at a different generic
term

AY3

— , 106
1 —exp|—a; —as+1i(up + u2)] (106)

This is the equilibrium phasor corresponding to the v, + v,
resonance. It is clear that if the damping decrements are small
compared to the distance to a linear resonance, i.e.,

s & o <1 —exp [i (i = )] (107)
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Non-Linear Averaged Fokker-Planck



Chao’'s One-Resonance K
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Chao’'s Falsely Resonant Result
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Hypotheses
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9
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Deriving Averaged Fokker-Planck
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Fluctuation Effects
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Averaging
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Theorem (Conjecture)
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This theorem appearsto be true for all possible maps “a’,
Including non-symplectic maps, such that
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Consequence
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L emma

kkab = Ik Dikab (25)
IkIm kaabif k 75 m (26)

Dimab is & polynomial in the I's

Pkm ab

The properties are simple consequences of the averaging process
for an arbitrary canonical transformation a in the nonlinear
case. As for the linear part, the off diagonal terms of I' actually
vanish. This is actually consistent with the Chao[l] theory of
synchrotron integrals.

The diffusion terms D will enter in the general solution more
naturally than I



Theorem : equilibrium Is a quadrature

Using Eq. (24), we get an equation for the equilibrium distri-
bution by setting Af = 0:

1. 90f B
20f + - sPar = constant = 0 (27)

We select the constant in Eq. (27) to be zero simply because
the average of I is not defined otherwise. The diffusion D is
given by:

D = Dq111011 + D1122022 + 2D11 12012 (28)

Thus we get for the equilibrium distribution:

f(I) = X' exp (— /O %’“df)
o 4o
A= /0 exp (_/0 5(1[) dl (29)



Here we will look at a simple example which is completly solv-
able. We invite the reader to do the simulation. Consider the
following map for a:

a;’ = p—cq’ (31)

For the rotation we choose a simple linear rotation in phase
space:

T = COSq + Ssinpup
ro = —sinpqg 4+ cospp (32)
So the total Hamiltonian map is just given by m = aoroa™1!.
We follow this map by a “radiative” stochastic map of the form:
s = DoA

A(q,p) = (Ag, Ap)
D(z,p) = (z+ 01181, p + 02282) (33)



The variables &1 and & are uncorrelated stochastic random vari-
ables of average zero and variance one. The total map is thus:

m = DoAocaoroa™! (34)

The invariant can be easily computed using a =

z* + (p — cx)”
>

I(z,p) = (35)



When can now evaluate the average fluctuation of I over the random processes r; and ra:
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011 T 039
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(I(4,0)) process = 1(¢:p) +

We average over the nonlinear canonical phase, this is done by substituting ¢ and doing an
average in the nonlinear Floquet variables:

2 2
011 T 029 2 2 2 2 /9
<(I(q,p))pmcess o a,>phase = J+ — = c((p—I— cq )}phase o1 + 3c o7 <q )phase
~ . _/ N—_——
J J
9 9
_ g4ty ‘2“’22 9202, ] (37)

Of course, we bring this back in the original (q, p) using o !:

_ o3, + o5
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Using Eq. (23), i.e.,

2(A]) = (%ID

we get for D:
D = 03, +055+2c%0]; 1
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We now solve Eq. (29),
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The population from I = 0 to I can be computed:

T 1—4a /Dy
P(I) = /O FI)dl =1 — {1 + g—;f}

The average value of I is given by:
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2 and 3 degrees of freedom

Things look more complex in several degrees of freedom. We
will again assume that the distribution is an exponential and
see what mathematical tricks we need to pull to get a friendly
quadrature. We first notice that the turn derivative df /dn is of
the form

Af

— = Vv =0 52
" v (52)
where the vector v is just:
1 0
v = 2aplf + = Z —fl“kmb (53)

m,a,b



Curl of afunction

Let us assume, incorrectly as it will turn out, that v = 0 for the _
equilibrium distribution. We write f = e’ and get for 6:

1 00
20011 —|‘_ aTkaa,b =0 (54)

m,a,b

We can use properties (25) and (26) to replace I' by D. Then we
can invert D to solve for the one-form df as a function of D!
and the damping decrements. All of this will make sense if and
only if the one-form df is indeed the derivative of a function.
Now the gods are abandoning us after all. It is not the case
in general! In fact we have

1 0
A0(I) — 22a -|—— %Pkmab = —V AP (55)

mab



We can start with the case N = 2. Let us introduce a gauge function ® = _
%I 11> fW. The equilibrium distribution is then given by the equations:

1] of of
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1 0 0 0
0 = 2a0lcf —|-§ 12D228[f2 + IIIZDIQaIfl T oL {Ilf2f‘3[’}_ (56)

Expanding all of this and expressing Eq. (56) in terms of 8, we get:
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The equation for ¥ is gotten by insuring that the RHS of

Eq. (58) is the derivative of a function:

OF, OF
oL, ol

0 = (59)

Eq. (59) will produce, for a generic coupled system, an equa-
tion which requires a function ¥ which is of the form ¥ =
Yo+ \:[11;011 + ‘Ijo;lfg + - -+, that is to say, a polynomial in the
invariants. The Taylor coefficient of ¥, like the moments of a
distribution, are affected by the higher coefficients. This means
that we must solve for these all at once using a Newton search.
It should be added that there is a unique ¥ for mildly coupled
systems near the linear/decoupled solution ¥ = 0. Once the
function W is obtained, then the equilibrium distribution f is a
quadrature:

I
- f / Fidl; + Fydl, (60)
0
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Arbitrary Path from 0 to [

(58)



IV. CONCLUSION AND FUTURE WORK

We have seen that

e if the fluctuations of the Cartesian variables can be lumped at one place
in the ring,

e if only the constant part of these fluctuations are kept,
e if damping decrements are small compared to the linear resonances,
e if the map is fully normalizable,

then it is possible to solve for the equilibrium distribution by quadrature.
In the future, this work will be complete if the following related problems can
be solved.

1. Obtain an averaged Fokker-Planck equation in the presence of position
dependent fluctuations. This will have to include the necessary ergodic
conjectures.

2. Study the commutation rules between deterministic operators and diffusion
operators so that the s-dependent effects can be correctly lumped at one
place. This will produce position dependent diffusion operators even if the
individual fluctuations at all positions s are linear, requiring the results of
item 1.



