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trapped in the ponderomotive field of the radiation is also limited
> saturation by the transverse emittance.

Jang-Hui Han Dynamics of electron beam and dark current 5



Emittance X'F PP,

arca
E =

Two-dimensional elliptical phase space z
area occupied by particle beam

According to Liouville’s theorem, the beam
emittance is invariant of the particle motion
-> Good indicator of the beam quality
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Emittance X' Pdp.

= arca
Two-dimensional elliptical phase space z
area occupied by particle beam

According to Liouville’s theorem, the beam
emittance is invariant of the particle motion
-> Good indicator of the beam quality

In linear accelerator (linac), the phase space area is not elliptical.
Therefore, the rms emittance is useful to define the beam emittance

£, = \/<x2><x'2> —{xx')”
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Emittance X' Pdp.

arca
E =

Two-dimensional elliptical phase space z
area occupied by particle beam

According to Liouville’s theorem, the beam
emittance is invariant of the particle motion
-> Good indicator of the beam quality

In linear accelerator (linac), the phase space area is not elliptical.
Therefore, the rms emittance is useful to define the beam emittance

£, = \/<x2><x’2> —{xx')”

In linac, the beam is accelerated through the accelerator.
So, the transverse divergence is scaled with the longitudinal momentum.

In this case, the normalized rms emittance is invariant.

G =) P = (0,

Jang-Hui Han Dynamics of electron beam and dark current



Photocathode RF gun
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Photocathode RF gun With the drive-laser, the initial

profile of the emitted electron
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Cs, Te Photocathode

The figure of merit for the photocathode characterization:
operative lifetime, quantum efficiency, response time,
achievable current density, uniformity of the emissive layer
- At present, Cs,Te is the best solution for the XFEL gun
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sathode _Pl U& of the cavity
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front view side view
in the cathode chamber in the gun cavity
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‘ Solenoids

Preservation of the emittance against the space charge force
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Photoinjector Test Faclility at Zeuthen (PITZ)

Goal: development of electron sources required for the VUV-FEL
and the European XFEL.

Measurements in this presentation have been made at PITZ.
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Photoemission (PE)
Quantum efficiency (QE)

QE =

number of emitted electrons

number of irradiated photons

photons

vacuum
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Thermal emittance

Thermal emittance: initial emittance of the beam,
which is configured during the beam emission
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Thermal emittance

Thermal emittance: initial emittance of the beam,
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Thermal emittance

Thermal emittance: initial emittance of the beam,
which is configured during the beam emission
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Effective electron affinity
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Effective electron affinity
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Effective electron affinity

Cs.Te vacuum electron affinity
increase dueto
surface contamination
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Thermal emittace: measurement & theory

<measurement>
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Analysis of measurement
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Summary for photoemission study

The kinetic energy of emitted electron varies with the
applied RF field strength at the cathode.

Thermal emittance measurement as a function of the
RF gradient has been analyzed.

A discrepancy between the measurement and the
theory has to be studied.

o Roughness and inhomogeneous QE of the cathode surface
o Jitters in the RF or in the laser
- Theoretical model is to be improved!

In parameter optimization for the electron beam of the
XFEL, the thermal emittance increase with the RF field
strength has to be considered.
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Field emission (FE): Dark current

Dark current in photocathode RF guns:
unwanted current generated in the absence of the drive-laser pulse
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Estimation of dark current for the XFEL

W =
! !

dark current (mA)
[\®)

¢ measurement Bk

— fit with extrapolation ol
I.; =C,E* exp(-C,/E)

20

30 40 50 60
max if field at the cathode (MV/m)

: European XFEL gun

In this extension, possible decrease of the dark current
with RF conditioning was not considered.
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Summary for field emission study

In the RF photocathode gun, the major dark
current sources are the photocathode and the
surrounding backplane of the gun cavity.

Dark current for the XFEL gun Is estimated to
be order of mA.

More study on the photocathode and the gun
cavity is crucial in order to reduce the dark
current.
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Secondary emission (SE)

When a primary electron strikes a solid material, it may penetrate the
surface and generate secondary electrons.

Secondary emission yield, SEY (9)
number of emittedelectrons

number of irradiatedelectrons

Secondary emission process has a great
similarity to photoemission process.

In general, good photoemitters are good
secondary electron emiters.

4 25
¢ Aluminum 99.5%
3.5+ a0 %, = Titanium 20 | Csl
34 ¢ *5s a Copper OFHC
a *re 2 w Stainless steel
257 8 oo 2 TiN > 15
0 o4 aanpase L f
(L}J) 2‘..' 8 ﬁ Ilu “th i “’-000... n 10 - r;'
1.5 - .lll!llllun ! l“"!!:’ A‘“i::; f s Exp.G&L
Vs HHTH . Ded. 5*(H)
1 g
0.5
0 : | : 0 v Y
0 500 1000 1500 2000 0 2 4 6
Energy (eV) Energy (keV)
From N. Hilleret et.al., EPAC2000 From J. Cazaux, JAP89, 8265 (2001)
Jang-Hui Han Dynamics of electron beam and dark current 37



Secondary emission (SE) — modeling

A SE model has been _ E, _ S
. ) o(E))=0_,.
implemented into ASTRA P E o max S—1+(Ep/Epmax)s

1.2

o
oS

o ¢
~

relative yield (8/8,,,)
o
(@))

--s=18 e

o
N
P s

0 | | | | | | | | |
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relative kinetic energy of the primary electron (Ep/Ep'maX)
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beam charge (pC) or momentum (MeV/c)

simulated trajectories
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beam charge (pC) or momentum (MeV/c)

SE dependence on emission phase
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beam charge (pC)

SE dependence on emission phase
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Multipacting: electron multiple impacting

Undesired explosive increase of the number of electrons

Multipacting may cause RF power loss, lead to vacuum breakdown,
and even damage the surface inside the cavity.
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Observation at PITZ and TTF phase 1

This multipacting has not been observed with Mo cathodes
except for the case of very bad vacuum in the gun cavity.
- Multipacting at the Cs,Te photocathode

= 0.6
S RF forward power to the gun
E 04l
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§ 0.2
=
(1] 0 .
E signal from
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o . .
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time (us)
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DC and multipacting vs. max RF gradient
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dark current and foward power (arb. unit)
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current (arb. unit)

Delay time vs. max RF gradient

max. RF gradient
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current (arb. unit)

Delay time vs. max RF gradient

max. RF gradient
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Dependence on solenoid field profile

main solenoid current
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Multipacting sometimes takes place in
the region according to the cathode
parameter and vacuum condition
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ASTRA simulation of multiplication process
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Summary of secondary emission study

The model implemented in ASTRA can simulate electron
beam dynamics including secondary emission

Multipacting takes place at the Cs,Te photocathode at a
low RF gradient (~1 MV/m) with a strong influence of the
solenoid field configuration.

For the typical operation conditions of the PITZ or VUV-
FEL guns, multipacing does not take place.

For the XFEL gun, the main solenoid will be located
farther, therefore weaker multipacting is expected.

RF guns using cathodes with higher secondary emission
yield might have a serious problem of multipacting
generation.
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Conclusion

= The dark current at the photocathode RF guns has the main
origin in field emission from the photocathode and the
surrounding backplane.

= For the XFEL much higher dark current is estimated,
therefore further study for reducing the amount is crucial.

= Since the strong RF field decreases the potential barrier for
the electron emission, the kinetic energy of the emitted
electrons increase with the RF strength.

= The thermal emittance for the PITZ gun has been analyzed
and that for the XFEL gun has been estimated.

= A secondary emission model simulates successfully the
beam dynamics for electron bunches with low charge and
short length.

= The multipacting at the cathode has been measured
systematically and analyzed with ASTRA simulation.
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Outlook

Since a transverse emittance lower than 1.0 mm mrad is
required for the XFEL gun, a study in order to decrease
thermal emittance at the high RF gradient is necessary.

More study in order to reduce strong dark current, which
IS estimated at the high RF gradient (60 MV/m) in the
XFEL gun, has to be made.
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