HOM Based Diagnostics at the TTF

Nov 14, 2005
Josef Frisch, Nicoleta Baboi, Linda Hendrickson,
Olaf Hensler, Douglas McCormick, Justin May, Olivier Napoly, Rita Paparella, Marc Ross,

Claire Simon, Tonee Smith
(SLAC, DESY, CEA Saclay)
With many contributions from the TTF team

Dipole Mode Response to Beam

Beam at angle produces signal at start of structure, cancels at end of structure:
Result is "derivative" like signal, 90 degrees
out of phase with position signal
Amplitude is proportional to (Angle) X (charge) X (cavity length)

Bunch tilt signal produces a signal with the same phase as the beam angle signal

Amplitude is proportional to (Tilt) X (charge) X (bunch length)

Not significant for the DESY TTF (bunches are very short)

Note that centers (position / angle for zero signal) of HOM modes are

HOM Modes For This Study

- In addition to the 1.3 GHz accelerating mode, the SC cavities support higher order modes with frequencies above approximately 1.6 GHz .
- We primarily use the Dipole TE111-6
($\sim 1700 \mathrm{MHz}$), TE111-7 ($\sim 1730 \mathrm{MHz}$) Modes, and the TM110-4 $(\sim 1860 \mathrm{MHz})$ mode. These are the near-speed-of-light dipole modes which couple most strongly to the beam.
- Experiments were done primarily in ACC4, with some tests in ACC1.

Experimental Setup - ACC4

HOM Measurement Electronics

Raw Scope Waveform

HOM Spectrum near TE111 modes

Signal Analysis for Beam Position

- Use conventional BPMs before and after structure to define beam position and angle at the cavities.
- For HOM signals, measure complex amplitude at line frequencies
- Each "line", e.g. TE111-6 has 2 polarizations, at slightly different frequencies
- Each cavity has 2 HOM ports
- Complex signal has 2 real degrees of freedome
- Get 8 real measurements / cavity (for 1 mode).

Linear Regression

- Given a set of measurements for a set of variables, predict the measurements for one variable based on the others.
- Prediction is a linear combination of the other variables for that measurement.
- Linear combination is chosen to minimize the RMS error of the prediction of the variable over all measurements.
- Need more measurements than variables!!!
- Can also use to predict X and Y, from mode components.

Set of Measurements $\mathrm{M}_{\mathrm{a}, \mathrm{b}}$ on the "reference" mode where "a" is the data set (1:100 for our data), and " b " is one of the 8 components of the mode:

Polarization 1 or 2
Coupler 1 or 2
Real or Imaginary part

$$
\left.\begin{array}{rl}
{\left[\begin{array}{cccc}
M_{1,1} & \ldots & M_{1,8} & 1 \\
M_{2,1} & \ldots & \ldots & 1 \\
\ldots & \ldots & \ldots & 1 \\
M_{100,1} & \ldots & M_{100,8} & 1
\end{array}\right]}
\end{array}\right]=\left[\begin{array}{c}
R_{1} \\
\ldots \\
R_{9}
\end{array}\right]=\left[\begin{array}{c}
M_{1, x} \\
M_{2, x} \\
\ldots \\
M_{100, x}
\end{array}\right]
$$

"Ones" allow for offsets
In modes vs. BPMs

Set of measurements from the BPMs X is a single component (out of $X, X^{\prime}, Y, Y^{\prime}$) for the target mode.

These coefficients R are found by "linear regression", in our case the arithmetic is done by Matlab.

Experimental setup for HOM Mode Regression against BPMs

- Use ACC4. All cavities measured, several modes. CAV1 measurements, TE111-6 shown.
- Really "typical": haven't had time to find plots with best resolution
- Use BPMs just upstream and downstream of ACC4
- HOM signals measured without pre-amplifiers to provide larger range (for cavity alignment studies).
- Approximately 10 dB increase in noise figure.
- Resolution measurements include conventional BPM resolution

Hom Mode vectors during corrector scan (4-d scan)

Real vs. Imaginary part of HOM modes, ACC4 Cavity 1

HOM Mode regression for X

HOM mode regression for X angle.

HOM BPM resolution

- 7 micron, 4 micron-radian resolution.
- Consistent with ~ 1 meter lever arm for angular resolution
- Indicates that conventional BPM resolution better than ~ 10 microns. (not limited)
- Dynamic range ~ 1 millimeter (with this gain / attenuation)
- Previous test of HOM mode resolution (end cavities vs. center cavity) gave 3 micron resolution
- Test done with preamplifiers - but in an earlier hardware configuration

Cavity Alignment from HOM modes

- Several analysis methods tried - so far best appears to be:
- Record HOM signals and conventional BPMs for a series of machine cycles
- Find HOM (complex) amplitudes as a function of frequency (from FFT)
- Linear Regression / Singular Value Decomposition to find matrix between HOM amplitudes and BPMs
- Find beam position / angle corresponding to zero HOM signals in each cavity.
- Work still preliminary

Cavity X Alignment ACC4

Cavity Center Measurement Issues

- HOMs have few micron resolution
- Would expect cavity resolution to similar level
- See resolution worse than 100 microns

WHY?

- Beam trajectories not steered through zero in angle.
- Must project angles to zero - introduces errors
- Can't "ignore" angle - it is related to position by RF phase angle.
- In future (this week?) use feedback to stabilize on position and angle for each cavity in sequence
- 8 HOM degrees of freedom (2 X coupler, 2 X mode polarization, 2 X real / imaginary), represent 4 real degrees of freedom (X, X', Y, Y')
- Need to understand how to treat correctly
- Some cavities, polarization frequencies are degenerate
- Need both couplers, but only 1 Ine
- Some cavities polarization frequences are well separated
- Need both lines, but only 1 coupler.
- Many cavities are partially degenerate
- Need help with the math.

HOM Based Beam Feedback

- Do a calibration of HOM mode (complex) amplitudes against two sets of X, Y correctors.
- Linear regression, similar to what we did for BPMs described earlier
- Use first and last cavity in a structure
- Feedback adjusts the correctors to minimize HOM amplitudes.
- 2 cavities, have 16 real measurements
- 4 control degrees of freedom
- Combine feedback signals for all modes -> minimizes RMS
- Two experiments:
- ACC4, cavities 1 and 8
- ACC1, cavities 1 and 8
- In each case plot the 16 real amplitudes (2 cavities $\times 2$ couplers $\times 2$ frequencies X real / imaginary part) for each machine cycle.

ACC 4 Feedback

HOM mode component amplitudes during feedback, vs. machine cycle

Conventional BPMs during feedback

Beam position and angle set to minimize total power in TE111-6 modes in Cavities 1 and 8 of ACC4

ACC1 Feedback

Feedback minimized HOM Power.

Emittance optimized before feedback operation 1.6X1.8 (90\%)

After feedback, Emittance slightly improved 1.6X1.6 (90\%) (not clear if this is statistically significant)

Beam not tuned after feedback
HOM mode component amplitudes during feedback, vs. machine cycle

HOM Diagnostic System for Full TTF Linac

- Want to simultaneously instrument all 40 cavities in the TTF
- Need 80 channels of data acquisition
- Scope based system (used for previous measurements) requires one (4 channel, $5 \mathrm{Gs} / \mathrm{s}$) scope for 2 cavities.
- 20 scopes, at $\sim 30,000 €$ is too expensive
- Build narrow band (10MHz BW) system
- Dowmix to 25 MHz IF
- Digitizer with $100 \mathrm{Ms} / \mathrm{s}, 14$ bit digitizers (SIS3301 8 channel VME modules)
- System hardware cost $\sim 100,000 €$ for full system.
- Narrow band system can only measure 1 mode - choose TE111-6 - 10 MHz bandwidth input filters
- Theoretical noise similar to existing HOM system
- Linearity / dynamic range expected $\sim 20 \mathrm{~dB}$ better than existing system.
- Expect 1 micron resolution at 1 millimeter dynamic range.

HOM Downmix Board

IF output

 amplifier

New DAQ system plot (multi-bunch)

Multi-bunch operation

- New hardware can digitizer signals for the full length of the TTF bunch train. >1 millisecond.
- At each bunch passage, field amplitude from the bunch addes to the existing field amplitude.
- Fields from previous bunches decay at a predictable rate
- Only care about field after passage of previous bunch History does not matter.
- Can subtract (decayed) fields at time of previous bunch to find new contribution.
- Effective integration time ~ 1 microsecond (rather than ~ 10 currently used). Will reduce resolution, but still expect <10 microns.

HOM System Applications

- Real time BPM - all cavities in TTF
- Expect single bunch resolution ~ 1 micron
- 3 micron demonstrated
- Measure each bunch in train to ~10 microns
- Multi-bunch measurement not yet demonstrated
- Need automated calibration and integration with DOOCS.
- HOM mode minimization feedback
- Should improve emittance
- Demonstrated for 2 cavities in one structure
- Should be possible to feedback to beam orbit which minimizes HOM power in full machine.
- Need to integrate with DESY feedback system
- Measure / monitor cavity alignment within structures
- Preliminary results suggest ~ 100 micron resolution
- Expect few micron results
- Work ongoing.

