Developing an Eletron source for the XFEL -

the Photo Injector Test Facility at Zeuthen, PITZ

- Introduction, Motivation & Parameters
- Examples of International Experimental Results on Photo Injector Developments
- Results obtained in Zeuthen
- Further Developments needed to reach the XFEL Requirements
- Summary

1

Acknowledgements, PITZ Collaboration

- colleagues from DESY in Zeuthen: J. Bähr, U. Gensch, H.-J. Grabosch, J.H. Han, S. Khodyachykh, M. Krasilnikov, V. Miltchev, A. Oppelt, B. Petrosyan, S. Riemann, L. Staykov, F. Stephan.
- colleagues from DESY in Hamburg:
 I. Bohnet, J.P. Carneiro, K. Flöttmann, S. Schreiber.
- colleagues from collaboration partners:
 - **BESSY** (E. Jaeschke, M.v. Hartrott, D. Krämer, D. Lipka, D. Richter)
 - INFN Milano (P. Michelato, L. Monaco, C. Pagani, D. Sertore)
 - INR Troitsk (V. Paramonov)
 - INRNE Sofia (G. Asova, G. Dimitrov, I. Tsakov)
 - MBI Berlin (W. Sandner, I. Will)
 - TU Darmstadt (W. Ackermann, W.F.O. Müller, S. Schnepp, S. Setzer, T. Weiland)
 - University of Hamburg (J. Rönsch, J. Rossbach)
 - YERPHI Yerevan (K. Abrahamyan)
 - [CCLRC Daresbury, Humboldt University Berlin, INFN Frascati, LAL Orsay]

General Goal of the PITZ Facility

develop an electron source with minimum transverse emittance !

for the operation of the VUV-FEL and the XFEL

3

What is Emittance ?

 $\mathbf{E}_{\mathbf{X},\mathbf{V}} \sim (e^{-}beam size) \cdot (e^{-}beam angular divergence)$

 $\mathbf{E}_{\mathbf{Z}}$ ~ (e⁻ bunch length) • (energy spread of e⁻ bunch)

E = 6 dimensional phase space volume

F. Stephan, DESY in Zeuthen, talk at the University of Hamburg,

Slice Emittance vs. Projected Emittance

meas. projected emittance ≥ slice emittance ↔ FEL process

Motivation: Why small emittance is important

VUV-FEL

Motivation: Why small emittance is important

• XFEL goal: 0.9 mm mrad@injector = 1.2 mm mrad@undulator
 • smaller emittance ⇒ new horizons:

shorter wavelength, less energy required

F. Stephan, DESY in Zeuthen,

Some Parameters of the VUV-FEL and the XFEL

pulse trains:	train ate length			
micro pulses:				
Parameters	VUV-FEL@TTF2	European XFEL		
final energy	1 GeV	20 GeV		
bunch charge	1 nC	1 nC		
max. repetition rate	10 Hz	10 Hz		
max. train length	800 µs	650 µs		
bunch spacing	0.11 – 1 µs	0.2 – 1 μs		
required injector emittance	2 mm mrad	0.9 mm mrad		
SASE output wavelength	6.4 – 30 nm	0.1 – 6.4 nm		

F. Stephan, DESY in Zeuthen,

Schematic of the RF Gun used at PITZ

F. Stephan, DESY in Zeuthen,

RF Guns

FELs need high space charge density (small &x,y, small &z, medium Q) related problems are e.g.:

• launch of e⁻ at optimal rf phase:

$$F_r^{SC} \propto Q \frac{r}{\gamma^2}$$

 F_r^{SC}, I

end

start

x

• focussing solenoid strength: F_r^{sol}

• laser parameters (trans., long.): homogenous

time

time

Projected Emittance Measurements at ATF@BNL

En = 0.8 mm mrad for 0.5 nC, accuracy: better than 15%

Transverse Laser Shape Studies from ATF@BNL

cylindical symmetric

1.30

i no

non-cylindical symmetric

83.33

41.67

200.33 5 166.67

> 125 03.33 41.53

parameters:

- 0.46 0. 48 nC
- phase: 30° from zero crossing
- emittance measured at 40 MeV via quad scan

"100%"

4 Normalized emittance Measurement 3 PARMELA (mm.mrad) 2 0 5 0 2 3 4 1 Laser type

additional study: Normalzied emittance (mm.mrad) emittance vs charge ~ linear

c at the University of Hambu

Slice Emittance Measurements from GTF@SLAC

WR on Emittance from SHI+FESTA@Japan

- 1.6 cell S-band gun (\rightarrow 4 MeV) + 70 cm SW linac (\rightarrow 14 MeV)
- Ti:Saphire laser system (→ 50 fs long pulses at 800 nm) + pulse shaping (e.g. gratings + liquid crystal spatial light modulator)
- temporal shape of laser pulses: (x-ray streak camera, resolution: ~2 ps)

World Record on Emittance

Emittance measurements for gaussian and square laser pulse shapes

Methode: quad scan @ 14 MeV, gaussian fit to background subtracted signal frames

Photo Injector Test Facility at Zeuthen (PITZ)

- Test facility for photo injectors: focus on VUV-FEL, XFEL
 ⇒ very small transverse emittance (0.9 mm mrad @ 1 nC)
 ⇒ stable production of short bunches with small energy spread
- Extensive R&D on photo injectors in parallel to TTF operation
- Compare detailed experimental results with simulations:
 ⇒ benchmark theoretical understanding of photo injectors
- Test and optimize RF guns for subsequent operation at VUV-FEL and XFEL
- Test new developments (laser, cathodes, beam diagnostics)

Short History and PITZ 1 Layout

Short History of PITZ:

- autumn 1999: decission to built PITZ
- 2000: civil construction of buildings
- 2001: installation of infrastructure
- January 2002: first photo electrons
- 2002/2003: upgrade facility
- December 2003: characterization of gun prototype 2 finished \rightarrow VUV-FEL
- 2004: install gun prototype 1, increase rf power, do characterization

F. Stephan, DESY in Zeuthen,

Laser system from the MBI in Berlin

F. Stephan, DESY in Zeuthen,

Temporal and Transverse Laser Profiles

F. Stephan, DESY in Zeuthen,

VUV-FEL Gun: long RF pulses, high power

RF Power source: 5 MW Klystron

- rf pulse lenght: **900 μs** ,

repetition rate: 10 Hz

- gradient: 42 MV/m at the cathode (~ 3 MW)

⇒ duty cycle: 0.9 %, average rf power: 27 kW (results only limited by conditioning time)

fulfills VUV-FEL RF parameter requirements

VUV-FEL Gun: Longit. Phase Space

F. Stephan, DESY in Zeuthen,

Transverse Emittance Measurements

F. Stephan, DESY in Zeuthen,

VUV-FEL Gun: Transverse Emittance

Picture from the VUV-FEL at Hamburg

PITZ gun was installed at VUV-FEL in Jan. 2004

F. Stephan, DESY in Zeuthen,

Prototype #1: RF Conditioning Results

conditioning root conditioning root conditioning root conditioned in 20

limited by 5 MW water cooling sy

→ upgrade Dec'04 – March

10 MV kiystron delivered on 19.1.2005	10 Hz rd power ted power <u>µs</u>)0 1200 is)	1500
	5 Hz	10 Hz
	.3 ms	1.0 ms
	I MW	3 MW
	6 kW	30 kW
	.65 %	1.0 %
	uary 28th, 2	2005 25

Prototype #1: Longit. Phase Space

Prototype #1: Thermal Emittance

for laser r.m.s. size = 0.58 mm

Prototype #1: Transverse Emittance

min. emittance and geom. average improved !

• still long way to go for XFEL requirements !

PITZ 2

 \rightarrow large extension of the facility and its research program

study emittance conservation principle:

(booster cavity + new diagnostics beam line + beam dynamics)

reach XFEL requirements: 0.9 mm mrad @ 1 nC:

(increased RF field on photo-cathode + improved laser system+ beam dynamics + improved photo-cathodes)

• study XFEL parameter space:

(low charge and short bunches + vice versa)

• operate at higher repetition rates:

(more cooling + new RF system + new gun cavity + diagnostics)

The Emittance Conservation Principle

Solenoid strength, drift length, and accelerating gradient of booster definded by **"invariant envelope" technique**:

Like for LCLS:

 \Rightarrow place entrance of booster at local emit. max. and beam size min.

 \Rightarrow define accelerating gradient by:

$$v'_{boost} = \frac{2}{\sigma_w} \sqrt{\frac{\hat{I}}{3I_0\gamma}}$$

 γ_{boost} = energy gain booster σ_w = rms beam size \hat{I} = peak current γ = mean beam energy I_0 = Alvfen current

(17 kA for electrons)

F. Stephan, DESY in Zeuthen,

ASTRA Simulation of PITZ2 (40MV/m, 20ps FWHM, 2ps rise/fall time)

\Rightarrow check that principle works and optimize it !

Preliminary Layout of PITZ2

F. Stephan, DESY in Zeuthen,

How to reach the beam quality required for the XFEL

Goal: 0.9 mm mrad from the injector for 10 Hz, 650 µs !!

- upgrades with ~ 40 MV/m at the cathode:
 - improved homegenous transverse laser profile: remotely controllable diaphragm close to the cathode

 \Rightarrow En ~ 1.5 mm mrad @ 1 nC

 improved longitudinal laser profile (20 ps FWHM, 2 ps rise/fall time):

use a broadband laser medium, solve problem of high average power, conserve stability

 \Rightarrow En ~ 1.2 mm mrad @ 1 nC

• in addition, with 60 MV/m at the cathode:

 \Rightarrow En ~ 0.9 mm mrad @ 1 nC

33

Setup for the Laser Beam Line to the Cathode

© I. Will (MBI), status: in preparation

F. Stephan, DESY in Zeuthen,

Transverse Beam Parameters for the XFEL Injector

F. Stephan, DESY in Zeuthen,

High Gradient, High Duty Cycle

thermal calculations:

Courtesy of Frank Marhauser, BESSY

 • 27 kW of average RF power: ⇒ 80°C (40MV/m, 900µs, 10 Hz) √done

130 kW of average RF power: ⇒ 170°C !!!

F. Stephan, DESY in Zeuthen,

talk at the University of Haml¹²⁰

122

124

130

128

126

Summary

- different developments for achieving small emittance electron beams are ongoing worldwide (WR|1nc = 1.2 mm mrad)
- results at PITZ up to now:
 - VUV-FEL gun:
 - minimum normalized emittance (one plane): 1.5 mm mrad
 - minimum geometrical average (both planes): 1.7 mm mrad
 - good agreement with simulations
 - next gun installed at PITZ (2004):
 - increased rf power:

<P> = 30 kW, P_{peak} = 4 MW, 1 % duty cycle, rf pulse lenght = 1.3 ms

37

- beam characterization: transverse emittance improved (1.3 / 1.6 mm mrad)
- goal for XFEL: 0.9 mm mrad
- PITZ 2 will start operation in spring 2005:
 - further improve emittance from gun (high gradient, laser parameters)
 - studies on conserving small emittance to higher beam energies

"Zugabe":

Slice Parameters for VUV-FEL Gun

horizontal / vertical slice emittance

ASTRA simulation of slice parameters for z = 1.62 m (EMSY location) Ibuck = 20 A

projected emittance

= 1.7 mm mrad

charge density / slice energy spread

F. Stephan, DESY in Zeuthen,