Properties of Convolution
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The correlation machine. This is a flowchart showing how the cross-correlation of two signals is calculated. In this
example, y[#n] is the cross-correlation of x[»] and ¢[n]. The dashed box is moved left or right so that its output points at
the sample being calculated in y[#]. The indicated samples from x[x] are multiplied by the corresponding samples in 1[],
and the products added. The correlation machine is identical to the convolution machine (Figs. 6-8 and 6-9), except that
the signal inside of the dashed box is not reversed. In this illustration, the only samples calculated in y[n] are where ¢[n]
is fully immersed in x[n].
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The continuous delta function. If the input to a linear system is brief compared to the resulting
output, the shape of the output depends only on the characteristics of the system, and not the shape
of the input. Such short input signals are called impulses. Figures a,b & c illustrate example input
signals that are impulses for this particular system. The term delta function is used to describe a
normalized impulse, i.e., one that occurs at ¢ = 0 and has an area of one. The mathematical symbols
for the delta function are shown in (d), a vertical arrow and &(f).
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The convolution integral. This equation y(t) = f x(D)h(@-1)dt
defines the meaning of: y(r) = x(¢)* h(r).
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Example of a continuous linear system. This electronic circuit is a low-pass filter composed of a single resistor
and capacitor. The impulse response of this system is a one-sided exponential.
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FIGURE 13-5

Example of continuous convolution. This figure illustrates a square pulse entering an RC low-pass filter (Fig.
13-4). The square pulse is convolved with the system's impulse response to produce the output.
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The convolution integral. This equation y(t) = f x(D)h(@-1)dt
defines the meaning of: y(r) = x(¢)* h(r).
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Convolution viewed from the input side. The input signal, x(7), is divided into narrow segments,
each acting as an impulse to the system. The output signal, y(1), is the sum of the resulting scaled
and shifted impulse responses. This illustration shows how three points in the input signal contribute
to the output signal.
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Convolution viewed from the output side. Each value in the output signal is influenced by many
points from the input signal. In this figure, the output signal at time ¢ is being calculated. The input
signal, x(v), is weighted (multiplied) by the flipped and shifted impulse response, given by h(t-1).
Integrating the weighted input signal produces the value of the output point, y(f)
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Example of optimal filtering. In (a), an exponential pulse buried in random noise. The frequency spectra of
the pulse and noise are shown in (b). Since the signal and noise overlap in both the time and frequency
domains, the best way to separate them isn't obvious.
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Example of optimal filters. In (a), three filter kernels are shown, each of which is optimal in some sense. The
corresponding frequency responses are shown in (b). The moving average filter is designed to have a
rectangular pulse for a filter kernel. In comparison, the filter kernel of the matched filter looks like the signal
being detected. The Wiener filter is designed in the frequency domain, based on the relative amounts of signal

and noise present at each frequency.
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