Present status of 200keV polarized electron gun at Nagoya University

Nagoya University

Masahiro Yamamoto, N. Yamamoto, T. Nakanishi, S. Okumi, F. Furuta, M. Miyamoto, M. Kuwahara, K. Naniwa, K. Yasui

KEK

M. Kuriki, H. Matsumoto, M. Yoshioka

Features of the 200kV Gun

- Load lock system
- Clean-Z (re-melted SUS316L)
- Electro-buff polishing (R<0.12 μ m)
- 3.0MV/m @ photocathode surface
- Double ceramics insulation
- Atomic hydrogen cleaning

Dark current < 1nA (@200kV)

Laser (1)

CW Nd:YVO₄ laser (SHG) (Millenia VsJ: Spectra Physics) Power 5W(max), 532nm

Pico-second Ti:Sapphire laser
(Tsunami PS: Spectra Physics)

Pulse width 20 ±1 ps
repetition 81.25 MHz
power 800 mW @780nm

CW Ti:Sapphire laser (Model 3900: Spectra Physics) tuning range 750 ~ 950 nm average power 500 mW

Laser (2)

Q-switch YAG Laser
(GCR-18S: Spectra Physics)
Pulse width ~20 ns
repetition 10 Hz
power 150mJ/pulse @532nm

Ti:Sapphire & SHG (LT-2211: LOTIS TII)

FF $\sim 40 \text{ mJ/pulse } @780 \text{nm}$

SH ~ 10 mJ/pulse @390nm

THG (LOTIS TII)

~ 1 mJ/pulse @260nm

Cs₂Te Photocathode experiment

Lifetime problem

Lifetime < 40 hours

 $H_2O: 1.1 \times 10^{-10}Pa$

Base Pressure: 3.2×10^{-9} Pa

Lifetime was limited by harmful residual gases? $CO_2: 2.3 \times 10^{-10} Pa$

Photocathode Lifetime

$$QE(t) = QE_0 \cdot exp\left[-\frac{t}{\tau}\right]$$

$$\frac{1}{\tau} = \frac{1}{\tau_{\text{gas}}} + \frac{1}{\tau_{\text{DC}}} + \frac{1}{\tau_{\text{ion}}}$$

τ is determined by ...

- 1. Adsorption molecules
- 2. Field emission
- 3. Ionization

The problem should be conquered first

$$\frac{1}{\tau} = \frac{1}{\tau_{\text{gas}}}$$
 $\tau_{\text{gas}} << \tau_{\text{DC}}, \tau_{\text{ion}}$

Improvement of a vacuum system

	Pumping Speed	Base Pressure
Before	1200 l/s	3.2e-9 Pa
After	4640 l/s	5.7e-10 Pa

NEG module

• WP950 (saes getters) pumping speed (H_2) 430 1/s \times 8 Total 3440 1/s

Improvement of a lifetime

Base Pressure: 5.7×10^{-10} Pa

Lifetime was improved ~ 150 hours

 $H_2O: 2.6 \times 10^{-11}Pa$

Total harmful gases were reduced to 1/5.

 $CO_2: 5.1 \times 10^{-11} Pa$

Degradation of NEA Surface

$$-\frac{dN}{dt} = \frac{N(t)}{N_0} \times \alpha \times I_{gas}$$

 N_0 : the number of initial dipole site

α: the coefficient of destruction per one molecule.

I_{gas}: the density of harmful molecules flux

$$\tau_{gas} = \frac{N_0}{\alpha \cdot I_{gas}} = \frac{N_0}{\alpha \cdot 9.4 \times 10^8 \, [\text{/s/cm}^2]} \sim 1.4 \times 10^5 \, [\text{s}]} = \frac{N_0}{\alpha \cdot 9.4 \times 10^8 \, [\text{/s/cm}^2]} \sim 5.4 \times 10^5 \, [\text{s}]} = \frac{N_0}{\alpha \cdot 2.2 \times 10^8 \, [\text{/s/cm}^2]} \sim 5.4 \times 10^5 \, [\text{s}]} = \frac{N_0}{\alpha \cdot 2.2 \times 10^8 \, [\text{/s/cm}^2]} \sim 1.4 \times 10^5 \, [\text{s}]} = \frac{N_0}{\alpha \cdot 2.2 \times 10^8 \, [\text{/s/cm}^2]} \sim 1.4 \times 10^5 \, [\text{s}]} = \frac{N_0}{\alpha \cdot 2.2 \times 10^8 \, [\text{/s/cm}^2]} \sim 1.4 \times 10^5 \, [\text{s}]} = \frac{N_0}{\alpha \cdot 2.2 \times 10^8 \, [\text{/s/cm}^2]} \sim 1.4 \times 10^5 \, [\text{s}]} = \frac{N_0}{\alpha \cdot 2.2 \times 10^8 \, [\text{/s/cm}^2]} \sim 1.4 \times 10^5 \, [\text{s}]} = \frac{N_0}{\alpha \cdot 2.2 \times 10^8 \, [\text{/s/cm}^2]} \sim 1.4 \times 10^5 \, [\text{s}]} = \frac{N_0}{\alpha \cdot 2.2 \times 10^8 \, [\text{/s/cm}^2]} \sim 1.4 \times 10^5 \, [\text{s}]} = \frac{N_0}{\alpha \cdot 2.2 \times 10^8 \, [\text{/s/cm}^2]} \sim 1.4 \times 10^5 \, [\text{s}]} = \frac{N_0}{\alpha \cdot 2.2 \times 10^8 \, [\text{/s/cm}^2]} \sim 1.4 \times 10^5 \, [\text{s}]} = \frac{N_0}{\alpha \cdot 2.2 \times 10^8 \, [\text{/s/cm}^2]} \sim 1.4 \times 10^5 \, [\text{s}]}$$

If $N_0 = 3.3 \times 10^{14} \, [/cm^2]$, $\alpha = 2.5 \sim 2.8$ is estimated.

 $I_{gas} \sim 3.5 \times 10^7 \, [/s/cm^2]$ is required for achieving 1000 h lifetime

Emittance Measurement System

Emittance Measurement System

Preliminary Result

Electrodes for High Field Gradient Gun

Present 200keV Gun

Clean-Z (re-melted SUS316L)
With electro-buff polishing

Field emission dependence of electrodes materials

Emax ~ 30MV/m would be possible by using Mo cathode & Ti anode

F.Furuta et al.
The result will be published in N.I.M.-A

Achieving 500keV gun would be possible ...

Summary

(1) Lifetime problem due to residual molecules was improved.

	before	after
Pumping Speed	1200 l/s	~ 4600 1/s
Base Pressure	$3.2 \times 10^{-9} \text{Pa}$	$5.7 \times 10^{-10} \text{Pa}$
Lifetime	< 40 h	~ 150 h

achieving longer lifetime would be possible...

(2) Upgrading new gun chamber and electrodes.

Change to Mo cathode and Ti anode from Clean-Z electrodes. Avoiding field emission to the gun chamber wall.

(3) Emittance measurement system by pepper pot method has been constructed.

Mistakes...

The electric connection between feed-through and NEG supporter was melted

NEG modules were not activated sufficiently this time.

The NEG supporter detected field emission from cathode more than -100kV bias voltage

Upgrading to new large radius gun chamber is in progress.