Properties of field emission dark current from Molybdenum and Titanium electrode

Nagoya University **Fumio Furuta\***, <u>M. Yamamoto</u>, T. Nakanishi, S. Okumi, T. Goto M. Miyamoto, M. Kuwahara, N. Yamamoto, K. Naniwa, K. Yasui

KEK H. Matsumoto, M. Yoshioka Spring-8 K. Togawa

Background

1) For protection NEA surface from ions & molecules

NEA surface is delicate and easily destroyed by small disturbances

Requirement Base pressure < 10<sup>-9</sup> Pa <u>Dark current < 10 nA</u>

2) For production of low emittance beam.

The initial emittance of electron beams extracted from NEA surface is very low.

For suppression of space charge effect ...

High Voltage ~ 500 kV <u>High field gradient ~ 10 MV/m</u>





### High Field Gradient Test Stand



7-9 Oct 2004 PESP2004 Mainz

:mm

**¢**48

-R 24

-R 15

flat top\$2

@Cathode surface

~ 200 MV/m



| Material                              | Surface                         | Rinsing                      | Ra        |  |
|---------------------------------------|---------------------------------|------------------------------|-----------|--|
| <mark>pure-Ti</mark><br>(JIS grade-2) | Buff polishing                  | HPR*<br>(80 kg/cm²、5<br>min) | < 0.1 µ m |  |
| Mo<br>(poly-crystal 5N)               | Diamond paste<br>Buff polishing | HPR<br>(80 kg/cm²、5 min)     | < 0.1 µ m |  |

\*HPR: high pressure ultra-pure water rinsing



### Dark Current Dependence (Electrodes Material)















# <u>Separation of Primary Field Emission</u> <u>from Total Dark Current</u>





d: gap separation [m]
I: dark current [A]
α: gap coefficient [m<sup>-1</sup>]

 $\alpha\,$  value is related to the enhancement effect

# <u>Separation of Primary Field Emission</u> from Total Dark Current



Enhancement factor  $\alpha$  is hardly depended on the dark current values

 $\rightarrow \alpha$  is peculiar to material properties ?

### Result of Primary Field Emission



### <u>Performance of Mo cathode - Ti anode</u>



From the result of Mo-Ti electrodes ...

- (1) Ti is good for anode material compared with Mo-Mo
- (2) Mo is good for cathode material compared with Ti-Ti



### Performance of Mo cathode - Ti anode

#### Dependence on gap separation

# Fitting and extrapolation of data points for Mo-Mo and Mo-Ti



### Summary

The separation of the primary field emission from total dark current is possible by measuring dependence of gap separation.

| ( cathode - anode )               |       |       |       |                       |
|-----------------------------------|-------|-------|-------|-----------------------|
|                                   | Ti-Ti | Mo-Mo | Mo-Ti |                       |
| Primary field<br>gradient* (MV/m) | 124   | 170   | 170   | *(I=1nA)              |
| Gap coefficient $_{lpha}$         | 0.4   | 1.0   | 0.6   | Enhancement<br>effect |

- Ti is good for suppression of enhancement emission.
- Mo is good for low primary emission.

Mo-Ti is the best configuration of reduction dark current. (cathode-anode) The details will be published in N.I.M.-A after few month. 7-9 Oct 2004 PESP2004 Mainz

# Feature Plan

### New High Gradient test stand with a Load-lock System



# New High Gradient test stand with a Load-lock System



7-9 Oct 2004 PESP2004 Mainz

Anode