

Characterizing the Impedance and Mitigating Instabilities at the APS

K.C. Harkay Advanced Photon Source, ANL

Acceleratory Physics Seminar DESY, 2004 Nov. 10

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Acknowledgements

Thanks to many people

- M. Borland, L. Emery, H. Shang, R. Soliday, C. Yao from Operational Analysis Group (accelerator physics and Linux cluster & software)
- Y.C. Chae, V. Sajaev, C.X. Wang, from Accel Phy Group
- L. Loiacono from Loyola U.
- E. Moog, S. Milton, E. Trakhtenberg, R. Rosenberg from XFD
- M. Petra from AOD
- G. Waldschmidt, A. Nassiri, R. Kustom, Y. Kang (former) from Rf group
- S. Sharma, L. Morrison from Mech Eng Group
- P. Choi, E. Rossi from Design/Draft Group
- X. Sun, G. Decker, O. Singh, A. Lumpkin, B. Yang, L. Erwin from Diag Group
- APS Operations Group
- J. Galayda (former APS, now LCLS)

Outline

- Introduction
- Recent performance enhancements
- Instabilities
 - Single bunch
 - Multi-bunch
 - Feedback
 - Electron cloud, ions, dust
- Impedance
 - Impedance database
 - Beam-based measurements
- Summary

Advanced Photon Source site

Linac	325 / ≤450 MeV (APS / FEL)	
	8 ns macropulse; 2.8 GHz	
	3 nC/pulse (topup)	
PAR	9.77 MHz, 117 MHz rf	
Booster	7.0 GeV synchrotron	
	352 MHz rf (2.84 ns)	
	2 Hz rep rate	
Storage Ring	7.0 GeV	
	1104 m circumference	
	h = 1296	
	9.0 MV rf voltage (typ.)	
	2.9e–4 momentum compaction	
ε _x	2.4 nm (3.0 nm eff.)	
	1% coupling	
$\mathbf{v_x} / \mathbf{v_y} / \mathbf{v_z}$	36.2 / 19.25 / 0.007	
$ au_x$ / $ au_y$ / $ au_z$	9.5 / 9.5 / 4.7 ms	
$\xi_{x,y} = \Delta v_{x,y} / (\Delta p/p)$	6, 6 (typ.)	
Total current	100 mA (typ.)	
	225/300 mA max/design	
Single bunch	5 mA	
limit	(8 mA higher ξ)	

DESY, 2004 Nov. 10

One Sector of the Advanced Photon Source Storage Ring

K. Harkay, APS/ANL

DESY, 2004 Nov. 10

- Standard (~75%)
 - 24 bunches, uniform spacing (54 λ_{rf})
 - 4.25 mA single-bunch current ($\tau \sim 7-9$ h)
 - Top-up, 2-min intervals
- Special operating modes (typ. 1-2 weeks ea. per run)
 - Hybrid mode (1+56), top-up: 8 mA single bunch, $\pm 1.3~\mu s$ gap ($\tau \sim 25~h)$
 - Many-bunch mode, non-top-up: 324 bunches, uniform spacing (4 $\lambda_{rf})$ (τ ~ 70 h)
 - Operator training, injector studies, FEL user experiments

Outline

- Introduction
- Recent performance enhancements
- Instabilities
 - Single bunch
 - Multi-bunch
 - Feedback
 - Electron cloud, ions, dust
- Impedance
 - Impedance database
 - Beam-based measurements
- Summary

Recent performance enhancements...

- ... and indirect impact on or of instabilities
- Accurate machine model, lattice correction (orbit response matrix method), lifetime, top-up (V. Sajaev, L. Emery)
 - Ongoing improvements allow lower sextupole strength for given chromaticity; allowed 8 mA bunch in hybrid mode
 - Technique applied to measure local impedance: ID chambers
- Low emittance (V. Sajaev, M. Borland, L. Emery)
 - 324-bunch mode requires higher-than-expected chromaticity; gap raises threshold. Speculation: fast ions?
- 5-mm chambers and radiation damage of ID permanent magnets
- X-ray bpm's in orbit correction (G. Decker)
 - Improved long-term (24 h) stability to 1-2 μm rms
 - Ring distortions carried out over yrs; rf frequency evolution caused problems with HOM-driven CB instabilities

"Chasing" HOMs

- 16 single-cell 352 MHz rf cavities
- HOM frequencies controlled through
 - 1. Staggering cavity lengths
 - 2. Tuner set-point
 - 3. Cavity water temperature (per 4-cavity sector)
- HOMs shift as rf frequency increased for each sector distortion (over years)
 - 1. Staggering sufficient until ca. July 2002; longitudinal CBI driven by HOM near 540 MHz, 23(24)-bunch mode
 - 2. Detuning required to stabilize above 85 mA
 - 3. Detuning insufficient after ca. Spring 2003; increase water T, but beam unstable for low rf voltage (for better lifetime)
- HOM dampers installed Sep 2004 beam stable over wide range of rf voltage (study ongoing)

Outline

- Introduction
- Recent performance enhancements
- Instabilities
 - Single bunch
 - Multi-bunch
 - Feedback
 - Electron cloud, ions, dust
- Impedance
 - Impedance database
 - Beam-based measurements
- Summary

Single-bunch instability: transverse mode-coupling

- Transverse wake defocuses beam; i.e., detunes betatron frequency
- When v_{β} crosses (mv_s) modulation sidebands, synchrotron motion can couple to transverse plane and beam can be lost unless chromaticity sufficiently large/positive
- Tune slope increases with number of ID chambers; mode merging threshold decreases, requiring ever-larger chromaticity to recover single bunch current.

Horizontal

Vertical

Large <x> oscillations above mode-merging threshold (V_{rf} 9.4 MV case shown): some Users will observe an effective emittance blowup, $\Delta \epsilon_x$

Note: bunch length σ_z , energy spread δ , and emittance ϵ_x also vary with current

(ϵ_x decoherence NOT 100% of <x> oscillation amplitude; σ_x = 220 µm (7.5 nm-r lattice))

DESY, 2004 Nov. 10

Outline

- Introduction
- Recent performance enhancements
- Instabilities
 - Single bunch
 - Multi-bunch
 - Feedback
 - Electron cloud, ions, dust
- Impedance
 - Impedance database
 - Beam-based measurements
- Summary

HOM dampers

- Machine study identified HOM near 540 MHz as most responsible for CBI in 24-bunch mode; worst two cavities in same sector
- This mode identified as potentially dangerous in early 1990s analysis by R. Kustom et al., and by L. Emery. There are other HOMs as well.
- HOM dampers designed, high-power tested and installed in four cavities in same sector (Fig. courtesy G. Waldschmidt)

HOM power being monitored, preliminary results

K. Harkay, APS/ANL

DESY, 2004 Nov. 10

Fast Feedback

- None presently exists (only orbit feedback up to 60 Hz)
- Multibunch
 - Near-term strategy: pursue passive HOM damping
- Single bunch: rise times ~0.5 ms.
 - Preliminary feedback studies underway (simulation, prototype tests)
 - Overall strategy being developed (impedance reduction vs. active feedback)

Electron cloud at APS

- Operated electron beam for first year, positron beam for two years, reverted back to electrons in 1998
- With positron beams, we were asked why we don't see electron cloud (EC) effects with AI chambers
- Installed RFA to measure distribution of EC colliding with walls

mounting on APS AI chamber behind

vacuum penetration (42 x 21 mm half-

mounting on 5-m-long APS chamber, top view, showing radiation fan from downstream bending magnet

dim.)

Cloud build-up and saturation: positrons

(middle of straight); level varies nonlinearly with bunch current (7 λ_{rf} 5 bunch spacing) 2.0 4 1.5 2 (nA/mA) mΑ 1.0 3 1.5 mA 10 >60Ah → 2x10⁻⁴ C/mm² 0.5 1 mΑ (Am/An) div (In A/m A) 8 10 12 14 $^{\circ}$ \cap 6 I_c/I_b 2 (current per bunch) $\delta_{max} = 3.1$ Û.1 20 30 0 0 40 50 60 20 40 60 80 100120 n. (b) number of bunches in train, N_b bunch spac, units of λ_r (2.84 ns/) Calculated EC density at saturation (e+ beam) KEKB 6e11 m-3 (no solenoid) • APS 10e10 m-3 (") PEPII 10e10 m-3 (between solenoids) (see Proc. ECLOUD'04)

Black: RFA data; Red: POSINST simul. (LBL)

APS: EC saturates after 20-30 bunches

EC and electron beams

K. Harkay, ICFA Newsletter 33 (2004).

- EC signals down an order of magnitude compared to e+ beam
- Comparison of RFA data (solid) with POSINST (dashed) not as good as for e+ beam
- Did observe lifetime degradation for certain electron beam bunch trains (EC-stimulated gas desorption); effect now gone
- Used same input parameters to model EC wall flux for APS SC undulator design. Wall heating could reach 1 W/m, a potential impact on cryogenic cooling design. Experiments planned.

- Few dust events very early in APS operations
- NEG is well separated from beam chamber (possible source of dust in rings like PEP-II)
- Transverse coupled-bunch instability observed recently in many-bunch mode
 - Not observed with high emittance many years ago (what else is different?)
 - 324-bunch mode required unexpectedly high chromaticity (too high for bunch current)
 - Gap in ring raised the threshold
 - Possible fast-ion instability (growth rate ~ $1/\sigma_v$)
 - Future machine study planned varying the coupling

Outline

- Introduction
- Recent performance enhancements
- Instabilities
 - Single bunch
 - Multi-bunch
 - Feedback
 - Electron cloud, ions, dust
- Impedance
 - Impedance database
 - Beam-based measurements
- Summary

Main contributions to impedance

Single-bunch instabilities

- small-gap ID chambers
- resistive wall impedance (horizontal)
- geometric impedance (transitions) (vertical)
- other discontinuities: rf fingers, kickers, scraper "cavity"
- "trapped" chamber modes?

Multibunch instabilities

- rf cavity higher-order modes (HOMs)
- other discontinuities: scraper "cavity"
- "trapped" chamber modes?

GOAL:

Total Wake Potential

$$W_{total} = \sum_{Element} N_i * W_i * \alpha_i,$$

 W_{total} = total wake-potential of the ring,

 N_i = number of the element in the ring,

 W_i = wake-potential of the element,

Method:

Standard Wake Potential

- 1. Data in SDDS forms: s, Wx, Wy, Wz
- 2. Uniform Simulation Condition
 - Rms bunch length = 5mm
 - Mesh size smaller than 0.5 mm
 - Wake length larger than 0.3 m
- 3. Deposit the authorized wake potentials in the designated directory
 - → Available to everyone who has access

 α_i = weight of the element. After construction: validate through simulation and compare to measured results

Geometry: Circular transition Simulation: MAFIA 3-D, ABCI 2-D Good agreements → Confidence in 3-D MAFIA simulation

DESY, 2004 Nov. 10

ID Chamber: Horizontal (Y.C. Chae)

- 1. E-Wake is POSITIVE (DEFOCUSING)
- 2. H-Wake is NEGATIVE (FOCUSING)
- 3. Cancels Each Other \rightarrow Negligible!

CONJECTURE

- 1. The negative wake potential is a completely 3-D phenomena,
- 2. Can occur when degree of perturbation in one dim. greater than in the other,
- 3. The negative wake potential is in the plane of the smaller perturbation.

Mode-merging about 5 mA

*Horizontal tune slope is difficult to measure; broad and weak.

K. Harkay, APS/ANL

DESY, 2004 Nov. 10

Tune Shift: Formula (Y.C. Chae)

K. Harkay, APS/ANL

DESY, 2004 Nov. 10

different bunch currents using orbit response matrix method Vertical betatron phase slope distribution

Analysis courtesy V. Sajaev (2003 PAC)

Vertical impedance calculation

For a particular component, the effective impedance can be found from measured slopes of the phase advance:

 $Z_{eff}^{i} = \frac{\frac{E}{e}\sigma_{s}}{R\beta}\frac{d\mu}{dI}$

Analysis courtesy V. Sajaev (2003 PAC)

	Units	High emittance	Low emittance
$d\mu/dI_{noID}$	A-1	-0.09	-0.14
dµ/dI _{8mm}	A-1	-0.39	-0.40
$d\mu/dI_{5mm}$	A-1	-1.33	-1.21
Z_{noID}^{eff}	kΩ/m	3.5	4.1
Z^{eff}_{8mm}	kΩ/m	31	34
Z_{5mm}^{eff}	kΩ/m	126	138
Z_{total}^{eff}	MΩ/m	1.1	1.2

8-mm ID chamber vertical Z: comparison of five methods

	8-mm ID	5-mm ID
Msrd $\Delta v/\Delta I$, as function of numbers of chambers [N. Sereno et al, Proc. of 1997 PAC, 1700]	53 kΩ/m per chamber x 20 = 1.1 MΩ/m	NA
Simulations with BBR model reproduced measured tune slope and intensity threshold for TMCI at low chromaticity [K. Harkay et al, Proc. of 1999 PAC, 1644]	1.2 MΩ/m $\Delta v_y /\Delta I = -2.6 \times 10^{-3} / mA$ TBCI thresh: 2.2 mA	NA

8-mm ID chamber vertical Z: comparison of five methods (cont)

	8-mm ID	5-mm ID
Analytical calculations: Resistive wall [Gluckstern and van Zeijts, CERN SL/AP 92-25, Jun 1992] Geometric (transition): assuming perfectly conducting circularly cylindrical tube [Bane and Krinsky,	$Z_{RW} + Z_{\theta}$ = 3.4 + 26 = 30 kΩ/m	$Z_{RW} + Z_{\theta}$ = 12 + (2.1 × 26) = 70 kΩ/m
MAFIA wake potentials: Z_{θ} from tune slopes for geometric comp. (Y.C. Chae)	20 kΩ/m	80 kΩ/m
Local bump method Z _y msmts [L. Emery, G. Decker, J. Galayda, Proc. of 2001 PAC, 1823]	16 kΩ/m	96 ± 8 kΩ/m 78 ± 14 kΩ/m
Orbit response matrix method [V. Sajaev, Proc. 2003 PAC]	32kΩ/m	130kΩ/m

RF Cavity (Y.C. Chae)

RF Cavity: Impedance (Y.C. Chae)

DESY, 2004 Nov. 10

RF Cavity: Interference (Y.C. Chae)

Interference between cavities

Vertical Scraper (Y.C. Chae)

Flag Chamber (Y.C. Chae)

FLAG CHAMBER WAS SURPRISE IN THE APS STORAGE RING.

BPM: Regular Chamber (Y.C. Chae)

BPMs are a major source of horizontal impedance in the ring!

DESY, 2004 Nov. 10

PO-BPM: 5mm, 8mm, 8mmR (Y.C. Chae)

Radiation Absorber (Y.C. Chae)

DESY, 2004 Nov. 10

Total Impedance (Y.C. Chae)

Impedance Budget (Y.C. Chae)

Pioneering Science and Technology

DESY, 2004 Nov. 10

Longitudinal MW: Measurement

Longitudinal MW: Measurement

Longitudinal MW: Simulation (Y.C. Chae)

Horizontal Saw-Tooth: Simulation (Y.C. Chae)

Vertical TMCI: Simulation (Y.C. Chae)

7.5 nm lattice; chromaticity: ξx=4, ξy=4

- 1. Well known decoherence behavior at low current
- 2. Mode coupling completes 3 mA
- 3. Beam size blow-up above mode coupling \rightarrow Beam Loss due to 5-mm ID Chamber

- Measurement: ID x-ray pinhole, IK5=1 kV, 030929
- Simulation: ID, BBR-1, $\Delta y=50 \ \mu m$
- Beam size normalized by the maximum for comparison

Vertical TMCI: Discussion (Y.C. Chae)

Current Situation

-

-

- 24 x 8-mm and 2 x 5-mm chambers installed in the ring
- Zy = 1 MW
- Mode coupling at 3 mA and stability limit at 5 mA
- Worst Situation
 - 34 x 5-mm chambers installed in the ring
 - Zy = 3.5 MW
 - Mode coupling at ~1 mA and stability limit at ~1.5 mA

Reduce the Impedance

- 8 cm x 4 cm \rightarrow 2 cm x 5 mm (present)
- 2 cm x 1 cm \rightarrow 2 cm x 5 mm (1/3 of the present Zy)
- Optimize the taper

Feedback damper (?)

Accumulation Limit is 8 mA

Radiation Damage to Insertion Devices

DESY, 2004 Nov. 10

Damage Distribution in Magnet Block

DESY, 2004 Nov. 10

Current Injection Scheme

Coordinates of the lost particles

Particle Loss: Physical Aperture (Y.C. Chae)

Coordinates of the lost particles

K. Harkay, APS/ANL

DESY, 2004 Nov. 10

Summary

- Considerable effort dedicated to characterizing the APS impedance, comparing multiple methods for the ID chambers
- Completed the initial construction of Impedance Database for the APS storage ring
- Preliminary simulations using show good agreement with measurements of single bunch intensity-dependent effects
 - Tune slopes
 - Bunch lengthening
 - Microwave instability
 - Horizontal sawtooth instability (prelim)
 - Vertical TBCI (prelim)

Summary (cont)

- Several recent performance enhancements impacted instabilities, or were impacted by instabilities
 - Rf frequency evolution (for x-ray bpm's) lead to installation of HOM dampers to avoid longitudinal CB instabilities
 - Lattice correction method lead to very accurate beam-based local impedance measurement
 - Low emittance evolution opportunity to study possibility of fast ion instabilities for ultra-low emittance rings
- Other benefits of detailed impedance:
 - Good agreement simulating injection losses and single bunch accumulation limit; more work to quantify contribution to radiation damage

