# Modeling of the secondary electron emission in rf photocathode guns

J.-H. Han, DESY Zeuthen 8 June 2004 Joint Uni. Hamburg and DESY Accelerator Physics Seminar

### Contents

- 1. Necessity of secondary electron emission algorithm in rf guns
- Photoinjector Test facility at DESY Zeuthen (PITZ)
- Gun cavity and photocathode
- Beam dynamics feature in rf guns
- 2. Modeling of secondary electron emission
- Secondary electron emission mechanism
- Secondary electron emission model
- 3. Application of the secondary algorithm to beam dynamics
- Beam dynamics at low gradient and low charge
- Momentum measurement at PITZ
- 4. Summary & outlook

# Photoinjector Test facility at DESY Zeuthen (PITZ)

- Test facility for FELs
  - $\Rightarrow 1 \pi \text{ mm mrad } @ 1 \text{ nC}$ with stable operation
- Extensive R&D on photoinjectors in parallel with TTF operation





Joint Univ. Hamburg & DESY Accelerator Physics Seminar

3



Joint Univ. Hamburg & DESY Accelerator Physics Seminar

4

### Cs<sub>2</sub>Te photocathode





side view of the cathode plug

top view of the cathode

#### Why Cs<sub>2</sub>Te?

- Relatively high electronic band gap (3.3 eV)
  → Low thermalization of the photoexcited electrons
- Low electronic affinity (0.2 eV)
  - $\rightarrow$  Easy for electron escape to the vacuum
- High quantum efficiency
  - ~ 10 % for fresh one,
  - ~ 0.5 % for used one in normal operation

#### Laser driven electron emission in rf gun



rf electric field at the cathode and kinetic energy of the beam after gun Vs. rf phase

Operating rf phase at 40 MV/m: 37°

highest energy smallest transverse emittance

rf longitudinal electric field at the cathode during electron beam emission = 40 (MV/m) \* sin (37°) = 24 (MV/m)

J.-H.Han, DESY Zeuthen

# Synchronization between electron beam and $\rm E_z$ in full cell



Beam velocity is much smaller than speed of light in the half cell.

→ to synchronize electron beam and the longitudinal electric field in the full cell, the electron beam has to start earlier than 90°

#### Longitudinal space charge field

### longitudinal laser profile taken with the streak camera



Transverse laser size:  $x_{rms} = y_{rms} = 0.5 \text{ mm}$ 



### Beam extraction from the gun



beam extraction from gun cavity; two line are Schottky effect fits. Space charge force is still higher than the rf electric field.

 $\rightarrow$  Some electrons emitted by laser hit back the cathode.

→ Secondary electron can be generated!

At low gradient region the Schottky effect fits do not work because the longitudinal space charge field effect is dominate.



Emission of true secondary electrons:

- (1) **Production** by kinetic impact of the primary electrons
- (2) Transport toward the surface
- (3) Escape through the solid-vacuum interface

### Secondary electron emission feature of metal



 $\delta_{max}$ : 0.5 ~ 2 E<sub>p, max</sub> = 1 keV

Low yield caused by (1) short penetration depth of primary electrons (2) thermalization of secondary electrons by electrons in conduction band

J.-H.Han, DESY Zeuthen

Joint Univ. Hamburg & DESY Accelerator Physics Seminar

# Secondary electron emission feature of Csl



High yield caused by

(1) long penetration depth of primary electrons due to wide band gap

- (2) no thermalization of secondary electrons by electrons in conduction band
- (3) low electron affinity

# Estimation of the secondary emission properties of Cs<sub>2</sub>Te

- Secondary emission properties are very different for different dielectric materials
- No measured data on the secondary emission properties of Cs<sub>2</sub>Te
- Rough estimation of the values from similar materials such as CsI and CsBr.
- Most important parameters: electronic band gap (E<sub>g</sub>), electron affinity (c).

| material           | <i>E<sub>g</sub></i> (eV) | <i>c</i> (eV)     | E <sub>p,max</sub> (keV) | <b>d</b> <sub>max</sub> |
|--------------------|---------------------------|-------------------|--------------------------|-------------------------|
| Csl <sup>a)</sup>  | 6.3                       | 0.1               | 2.15                     | 17.23                   |
| CsBr <sup>a)</sup> | 7.0                       | 0.2               | 2.34                     | 18.61                   |
| Cs <sub>2</sub> Te | 3.3 <sup>b)</sup>         | 0.2 <sup>b)</sup> | 2 (?)                    | 15 (?)                  |

<sup>a)</sup> K. I. Grais, *et. al.*, J. Appl. Phys. **53**, 5239 (1982).

<sup>b)</sup> R. A. Powel, et. al., Phys. Rev. B 8, 3987 (1973).

### Modeling of secondary electron emission for simulation



Missing parameters:

- (1) Delay time between impact of primary electron and secondary electron emission is assumed to be 1 ps.
- (2) Electric field dependence of secondary emission characteristic is neglected.
  - $\rightarrow$  These parameters will be included soon.

#### Charge and momentum measurement



Beam charge measurement: Faraday cup at 0.78 m downstream from cathode

Beam momentum measurement: dipole at 3.45 m downstream screen at 4.13 m downstream



Projected beam image on the screen for momentum measurement

### Momentum measurement tool (MAMA)

#### developed by Dirk Lipka



main panel of MAMA (Momentum And Momentum spread Analysis)

analysis by MAMA

Joint Univ. Hamburg & DESY Accelerator Physics Seminar

### Application of secondary emission model

- Short Gaussian laser (5.6 ps FWHM)
  - → phase dependence of electron beam is clear.
- Low charge (~ 5 pC)  $\rightarrow$  space charge effect negligible.
- Low gradient (21 MV/m) → low impact energy of primary electrons to generate many secondary electrons
- Cs2Te cathode with 60 nm thickness → more secondary generation



Joint Univ. Hamburg & DESY Accelerator Physics Seminar



Joint Univ. Hamburg & DESY Accelerator Physics Seminar

18

#### Closer view of the bump



Joint Univ. Hamburg & DESY Accelerator

Physics Seminar



### Summary

- Secondary electron emission should be included into simulation of electron dynamics in rf guns.
- Simple secondary model is implemented to ASTRA.
- Parameters of Cs<sub>2</sub>Te was estimated from CsI and CsBr
- To test this model, the bump which happens at low charge and low gradient was investigated.
   (Almost all other parameters except for secondary)
  - electron emission are clear.)
- The first application of the model is successful to explain the measurement of beam charge and momentum distribution as a function of phase.

### Outlook

- Better model is under investigation.
- Fitting of the secondary electron emission is ongoing.
- Direct measurement of the secondary parameters of Cs<sub>2</sub>Te photocathodes is foreseen with INFN Milan colleagues.
- With this model, secondary electron emission related phenomena in rf guns could be explained;
  - emission of the very high density beam
  - multipacting on the cathode
  - more detailed dark current simulation

**•** . . .

### Phenomena related to secondary electron emission (example 1): multipacting



measured multipacting

#### simulated multipacting on cathode

Joint Univ. Hamburg & DESY Accelerator Physics Seminar

### Phenomena(?) related to secondary electron emission (example 2): dark current



Joint Univ. Hamburg & DESY Accelerator

Physics Seminar

#### Phenomena(?) related to secondary electron emission (example 3): emission of very high density beam



Joint Univ. Hamburg & DESY Accelerator

**Physics Seminar**