Magnetic modes in superconducting RF cavities

D.Janssen

- 1. Static magnetic field in normal conducting RF photoelectron guns
- 2. Electric and magnetic modes
- 3. Power input of different modes
- 4. Calculation of beam properties
- 5. Possibilities for realization

Static magnetic field in normalconducting RF photoelectron guns

RF photoelectron gun DESY

Electric and magnetic modes

Helmholz equation

$$(? + k^2) \mathbf{E} = 0$$
 $(? + k^2) \mathbf{H} = 0$ $k=?/c$
rot $\mathbf{H} = i^*e^* ? *\mathbf{E}$

Boundary conditions

surface:
$$\mathbf{E}_{\text{paralel}} = 0$$
, $\mathbf{H}_{\text{senkrect}} = 0$

? _{TM} = 2.4048*c/R ? _{TE} = c*
$$\sqrt{\frac{\pi^2}{l^2} + \frac{(3.8317)^2}{R^2}}$$

TESLA middle cell, $W_{TM} = 10.04 \text{ J}, W_{TE} = 16 \text{ J}$

$$f = 2499 \text{ MHz}, Bz_{max}(r=0) = 0.34T$$

e:02/13/04 :midd1300_only

Power input of different modes

$$P \sim B_{max}^2(s)$$
 TM – Mode: $P \sim B_{f,max}^2(s)$, TE – Mode: $P \sim (B_r^2(s) + B_z^2(s))_{max}$

Example : TESLA cavity, TM – Mode, $Ez_{max} = 50 \text{ MV/m}$, $B_{f,max}(s) = 0.176 \text{ T}$

Common input of TE and TM modes ($f_{TE} = 3 \ast \ f_{TM}$)

Spatial separation of the maximum power input

Cavity shape

Power input elong of the surface

Magnetic modes create no fieldemission

In cw – time regime the maximal possible accelerating fieldstrength of a superconducting cavity can not be used. (Large consumption of cryo power, large power losses in the Inputcoupler)

Beam dynamic of a superconducting RF photoelectron gun with electric and magnetic RF modes

TM - Mode

TE - Mode

Magnetic and electric fieldstrength on the axis

Bunchparameter:	$\mathbf{Q} = 1\mathbf{nC}$	
	Flat top profil	r = 1.2 mm
		1 = 20 ps

Fieldparameter:	Electric mode	f = 1300 MHz f $_{TM}$ = 58° Ez $_{max}$ (r=0) = 50 MV/m Bs $_{max}$ = 0.11 T
	Magnetic mode	f = 3900 MHz f $_{TM}$ = 57° Bz $_{max}$ (r=0) = 0.34 T Bs $_{max}$ = 0.24 T

Results:	z = 0.47m	$e_{x,rms} = 0.6 mm mrad$
	$s_{x,rms} = 0.2 mm$	$e_z = 24 \text{ mm keV}$
	$s_{z,rms} = 1.9 mm$? E = 21 keV
	E = 4.44 MeV	

Longitudinal Phase-Space

z mm

Phasedependence of the der emittance

Fielddistribution in a 3 ¹/₂ cell cavity Full cells have TESLA shape

TE - Mode

Fieldstrength at r = 0

Bunchparameter:	Q = 1nC	
	Flat top profil	r = 1.2 mm
		1 = 20 ps

Fieldparameter:	Elektrical mode	f = 1300 MHz f _{TM} = 60° $Ez_{max}(r=0) = 50 \text{ MV/m}$ $Bs_{max} = 0.11 \text{ T}$
	Magnetic mode	f = 3953 MHz f _{TE} = 65° $Bz_{max}(r=0) = 0.338 T$ $Bs_{max} = 0.223 T$

Results:	z = 1.65m	$e_{x,rms} = 0.5 mm mrad$
	$s_{x,rms} = 0.3 mm$	$e_z = 41 \text{ mm keV}$
	$s_{z,rms} = 2.1 mm$? E = 20 keV
	E = 10.2 MeV	

Transversale emittance as funktion of the phase of the TE - mode

Possibilities of realization

-Input of the TE – mode by the HOM coupler

-Measurement of the fieldstrength limits

-Tuning of TE und TM modes in the same cavity